1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

Adding right arguments to the agent

This commit is contained in:
Ajay Deshpande
2018-09-14 16:17:34 -07:00
committed by zach dwiel
parent ad7f031031
commit c2991819b4
2 changed files with 44 additions and 49 deletions

View File

@@ -9,63 +9,55 @@ from rl_coach.memories.memory import MemoryGranularity
from rl_coach.schedules import LinearSchedule
def construct_graph(redis_ip='localhost', redis_port=6379):
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(1000)
####################
# Graph Scheduling #
####################
#########
# Agent #
#########
agent_params = DQNAgentParametersDistributed()
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(1000)
# DQN params
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100)
agent_params.algorithm.discount = 0.99
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)
#########
# Agent #
#########
agent_params = DQNAgentParametersDistributed()
# NN configuration
agent_params.network_wrappers['main'].learning_rate = 0.00025
agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
# DQN params
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100)
agent_params.algorithm.discount = 0.99
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)
# ER size
agent_params.memory.max_size = (MemoryGranularity.Transitions, 40000)
# NN configuration
agent_params.network_wrappers['main'].learning_rate = 0.00025
agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
# E-Greedy schedule
agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, 10000)
# ER size
agent_params.memory.max_size = (MemoryGranularity.Transitions, 40000)
# Redis parameters
agent_params.memory.redis_ip = redis_ip
agent_params.memory.redis_port = redis_port
# E-Greedy schedule
agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, 10000)
################
# Environment #
################
env_params = Mujoco()
env_params.level = 'CartPole-v0'
################
# Environment #
################
env_params = Mujoco()
env_params.level = 'CartPole-v0'
vis_params = VisualizationParameters()
vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]
vis_params.dump_mp4 = False
vis_params = VisualizationParameters()
vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]
vis_params.dump_mp4 = False
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.test = True
preset_validation_params.min_reward_threshold = 150
preset_validation_params.max_episodes_to_achieve_reward = 250
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.test = True
preset_validation_params.min_reward_threshold = 150
preset_validation_params.max_episodes_to_achieve_reward = 250
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=vis_params,
preset_validation_params=preset_validation_params)
return graph_manager
graph_manager = construct_graph()
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=vis_params,
preset_validation_params=preset_validation_params)

View File

@@ -40,6 +40,9 @@ def main():
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
graph_manager.agent_parameters.memory.redis_ip = args.redis_ip
graph_manager.agent_params.memory.redis_port = args.redis_port
rollout_worker(
graph_manager=graph_manager,
checkpoint_dir=args.checkpoint_dir,