1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

removing doom env

This commit is contained in:
Roman Dobosz
2018-05-10 09:19:32 +02:00
parent 5d47368972
commit cd6376f821
4 changed files with 6 additions and 394 deletions

View File

@@ -148,7 +148,7 @@ class AgentParameters(Parameters):
class EnvironmentParameters(Parameters):
type = 'Doom'
type = 'Gym'
level = 'basic'
observation_stack_size = 4
frame_skip = 4
@@ -295,14 +295,6 @@ class Atari(EnvironmentParameters):
crop_observation = False # in the original paper the observation is cropped but not in the Nature paper
class Doom(EnvironmentParameters):
type = 'Doom'
frame_skip = 4
observation_stack_size = 3
desired_observation_height = 60
desired_observation_width = 76
class Carla(EnvironmentParameters):
type = 'Carla'
frame_skip = 1

View File

@@ -14,13 +14,11 @@
# limitations under the License.
#
from coach.environments.gym_environment_wrapper import GymEnvironmentWrapper
from coach.environments.doom_environment_wrapper import DoomEnvironmentWrapper
from coach.environments.carla_environment_wrapper import CarlaEnvironmentWrapper
from coach import utils
class EnvTypes(utils.Enum):
Doom = "DoomEnvironmentWrapper"
Gym = "GymEnvironmentWrapper"
Carla = "CarlaEnvironmentWrapper"

View File

@@ -1,158 +0,0 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import numpy as np
from coach import logger
try:
import vizdoom
except ImportError:
logger.failed_imports.append("ViZDoom")
from coach.environments import environment_wrapper as ew
from coach import utils
# enum of the available levels and their path
class DoomLevel(utils.Enum):
BASIC = "basic.cfg"
DEFEND = "defend_the_center.cfg"
DEATHMATCH = "deathmatch.cfg"
MY_WAY_HOME = "my_way_home.cfg"
TAKE_COVER = "take_cover.cfg"
HEALTH_GATHERING = "health_gathering.cfg"
HEALTH_GATHERING_SUPREME = "health_gathering_supreme.cfg"
DEFEND_THE_LINE = "defend_the_line.cfg"
DEADLY_CORRIDOR = "deadly_corridor.cfg"
key_map = {
'NO-OP': 96, # `
'ATTACK': 13, # enter
'CROUCH': 306, # ctrl
'DROP_SELECTED_ITEM': ord("t"),
'DROP_SELECTED_WEAPON': ord("t"),
'JUMP': 32, # spacebar
'LAND': ord("l"),
'LOOK_DOWN': 274, # down arrow
'LOOK_UP': 273, # up arrow
'MOVE_BACKWARD': ord("s"),
'MOVE_DOWN': ord("s"),
'MOVE_FORWARD': ord("w"),
'MOVE_LEFT': 276,
'MOVE_RIGHT': 275,
'MOVE_UP': ord("w"),
'RELOAD': ord("r"),
'SELECT_NEXT_WEAPON': ord("q"),
'SELECT_PREV_WEAPON': ord("e"),
'SELECT_WEAPON0': ord("0"),
'SELECT_WEAPON1': ord("1"),
'SELECT_WEAPON2': ord("2"),
'SELECT_WEAPON3': ord("3"),
'SELECT_WEAPON4': ord("4"),
'SELECT_WEAPON5': ord("5"),
'SELECT_WEAPON6': ord("6"),
'SELECT_WEAPON7': ord("7"),
'SELECT_WEAPON8': ord("8"),
'SELECT_WEAPON9': ord("9"),
'SPEED': 304, # shift
'STRAFE': 9, # tab
'TURN180': ord("u"),
'TURN_LEFT': ord("a"), # left arrow
'TURN_RIGHT': ord("d"), # right arrow
'USE': ord("f"),
}
class DoomEnvironmentWrapper(ew.EnvironmentWrapper):
def __init__(self, tuning_parameters):
ew.EnvironmentWrapper.__init__(self, tuning_parameters)
# load the emulator with the required level
self.level = DoomLevel().get(self.tp.env.level)
self.scenarios_dir = os.path.join(os.environ.get('VIZDOOM_ROOT'),
'scenarios')
self.game = vizdoom.DoomGame()
self.game.load_config(os.path.join(self.scenarios_dir, self.level))
self.game.set_window_visible(False)
self.game.add_game_args("+vid_forcesurface 1")
if self.is_rendered:
self.game.set_screen_resolution(vizdoom.ScreenResolution.RES_320X240)
self.renderer.create_screen(320, 240)
else:
# lower resolution since we actually take only 76x60 and we don't need to render
self.game.set_screen_resolution(vizdoom.ScreenResolution.RES_160X120)
self.game.set_render_hud(False)
self.game.set_render_crosshair(False)
self.game.set_render_decals(False)
self.game.set_render_particles(False)
self.game.init()
# action space
self.action_space_abs_range = 0
self.actions = {}
self.action_space_size = self.game.get_available_buttons_size() + 1
self.action_vector_size = self.action_space_size - 1
self.actions[0] = [0] * self.action_vector_size
for action_idx in range(self.action_vector_size):
self.actions[action_idx + 1] = [0] * self.action_vector_size
self.actions[action_idx + 1][action_idx] = 1
self.actions_description = ['NO-OP']
self.actions_description += [str(action).split(".")[1] for action in self.game.get_available_buttons()]
for idx, action in enumerate(self.actions_description):
if action in key_map.keys():
self.key_to_action[(key_map[action],)] = idx
# measurement
self.measurements_size = self.game.get_state().game_variables.shape
self.width = self.game.get_screen_width()
self.height = self.game.get_screen_height()
if self.tp.seed is not None:
self.game.set_seed(self.tp.seed)
self.reset()
def _update_state(self):
# extract all data from the current state
state = self.game.get_state()
if state is not None and state.screen_buffer is not None:
self.state = {
'observation': state.screen_buffer,
'measurements': state.game_variables,
}
self.reward = self.game.get_last_reward()
self.done = self.game.is_episode_finished()
def _take_action(self, action_idx):
self.game.make_action(self._idx_to_action(action_idx), self.frame_skip)
def _preprocess_observation(self, observation):
if observation is None:
return None
# for the last step we get no new observation, so we shouldn't preprocess it
if self.done:
return observation
# move the channel to the last axis
observation = np.transpose(observation, (1, 2, 0))
return observation
def _restart_environment_episode(self, force_environment_reset=False):
self.game.new_episode()

View File

@@ -17,11 +17,11 @@ import ast
import json
import sys
from coach import agents
from coach import agents # noqa
from coach import configurations as conf
from coach import environments as env
from coach import exploration_policies as ep
from coach import presets
from coach import environments as env # noqa
from coach import exploration_policies as ep # noqa
from coach import presets # noqa
def json_to_preset(json_path):
@@ -69,79 +69,6 @@ def json_to_preset(json_path):
return tuning_parameters
class Doom_Basic_DQN(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.DQN, conf.Doom, conf.ExplorationParameters)
self.env.level = 'basic'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.num_heatup_steps = 1000
class Doom_Basic_QRDQN(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.QuantileRegressionDQN, conf.Doom, conf.ExplorationParameters)
self.env.level = 'basic'
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.learning_rate = 0.00025
self.agent.num_episodes_in_experience_replay = 200
self.num_heatup_steps = 1000
class Doom_Basic_OneStepQ(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.NStepQ, conf.Doom, conf.ExplorationParameters)
self.env.level = 'basic'
self.learning_rate = 0.00025
self.num_heatup_steps = 0
self.agent.num_steps_between_copying_online_weights_to_target = 100
self.agent.optimizer_type = 'Adam'
self.clip_gradients = 1000
self.agent.targets_horizon = '1-Step'
class Doom_Basic_NStepQ(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.NStepQ, conf.Doom, conf.ExplorationParameters)
self.env.level = 'basic'
self.learning_rate = 0.000025
self.num_heatup_steps = 0
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.agent.optimizer_type = 'Adam'
self.clip_gradients = 1000
class Doom_Basic_A2C(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.ActorCritic, conf.Doom, conf.CategoricalExploration)
self.env.level = 'basic'
self.agent.policy_gradient_rescaler = 'A_VALUE'
self.learning_rate = 0.00025
self.num_heatup_steps = 100
self.env.reward_scaling = 100.
class Doom_Basic_Dueling_DDQN(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.DDQN, conf.Doom, conf.ExplorationParameters)
self.env.level = 'basic'
self.agent.output_types = [conf.OutputTypes.DuelingQ]
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.num_heatup_steps = 1000
class Doom_Basic_Dueling_DQN(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.DuelingDQN, conf.Doom, conf.ExplorationParameters)
self.env.level = 'basic'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.num_heatup_steps = 1000
class CartPole_Dueling_DDQN(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.DDQN, conf.GymVectorObservation, conf.ExplorationParameters)
@@ -158,17 +85,6 @@ class CartPole_Dueling_DDQN(conf.Preset):
self.test_max_step_threshold = 100
self.test_min_return_threshold = 150
class Doom_Health_MMC(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.MMC, conf.Doom, conf.ExplorationParameters)
self.env.level = 'HEALTH_GATHERING'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 10000
class CartPole_MMC(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.MMC, conf.GymVectorObservation, conf.ExplorationParameters)
@@ -203,7 +119,7 @@ class CartPole_PAL(conf.Preset):
class CartPole_DFP(conf.Preset):
def __init__(self):
Preset.__init__(self, conf.DFP, conf.GymVectorObservation, conf.ExplorationParameters)
conf.Preset.__init__(self, conf.DFP, conf.GymVectorObservation, conf.ExplorationParameters)
self.env.level = 'CartPole-v0'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.0001
@@ -213,40 +129,6 @@ class CartPole_DFP(conf.Preset):
self.agent.goal_vector = [1.0]
class Doom_Basic_DFP(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.DFP, conf.Doom, conf.ExplorationParameters)
self.env.level = 'BASIC'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.0001
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 10000
self.agent.use_accumulated_reward_as_measurement = True
self.agent.goal_vector = [0.0, 1.0]
# self.agent.num_consecutive_playing_steps = 10
class Doom_Health_DFP(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.DFP, conf.Doom, conf.ExplorationParameters)
self.env.level = 'HEALTH_GATHERING'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 10000
self.agent.use_accumulated_reward_as_measurement = True
class Doom_Deadly_Corridor_Bootstrapped_DQN(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.BootstrappedDQN, conf.Doom, conf.BootstrappedDQNExploration)
self.env.level = 'deadly_corridor'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.num_heatup_steps = 1000
class CartPole_Bootstrapped_DQN(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.BootstrappedDQN, conf.GymVectorObservation, conf.BootstrappedDQNExploration)
@@ -538,16 +420,6 @@ class Atari_DQN_TestBench(conf.Preset):
self.num_training_iterations = 500
class Doom_Basic_PG(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.PolicyGradient, conf.Doom, conf.CategoricalExploration)
self.env.level = 'basic'
self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP'
self.learning_rate = 0.00001
self.num_heatup_steps = 0
self.agent.beta_entropy = 0.01
class InvertedPendulum_PG(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.PolicyGradient, conf.GymVectorObservation, conf.AdditiveNoiseExploration)
@@ -925,22 +797,6 @@ class CartPole_NEC(conf.Preset):
self.test_min_return_threshold = 150
class Doom_Basic_NEC(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.NEC, conf.Doom, conf.ExplorationParameters)
self.env.level = 'basic'
self.learning_rate = 0.00001
self.agent.num_transitions_in_experience_replay = 100000
# self.exploration.initial_epsilon = 0.1 # TODO: try exploration
# self.exploration.final_epsilon = 0.1
# self.exploration.epsilon_decay_steps = 1000000
self.num_heatup_steps = 200
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5
self.seed = 123
class Montezuma_NEC(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.NEC, conf.Atari, conf.ExplorationParameters)
@@ -971,28 +827,6 @@ class Breakout_NEC(conf.Preset):
self.seed = 123
class Doom_Health_NEC(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.NEC, conf.Doom, conf.ExplorationParameters)
self.env.level = 'HEALTH_GATHERING'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 10000
self.agent.num_playing_steps_between_two_training_steps = 1
class Doom_Health_DQN(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.DQN, conf.Doom, conf.ExplorationParameters)
self.env.level = 'HEALTH_GATHERING'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 10000
self.agent.num_steps_between_copying_online_weights_to_target = 1000
class Pong_NEC_LSTM(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.NEC, conf.Atari, conf.ExplorationParameters)
@@ -1285,23 +1119,6 @@ class BipedalWalker_A3C(conf.Preset):
self.agent.middleware_type = conf.MiddlewareTypes.FC
class Doom_Basic_A3C(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.ActorCritic, conf.Doom, conf.CategoricalExploration)
self.env.level = 'basic'
self.agent.policy_gradient_rescaler = 'GAE'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.env.reward_scaling = 100.
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 30
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.01
self.clip_gradients = 40
self.agent.middleware_type = conf.MiddlewareTypes.FC
class Pong_A3C(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.ActorCritic, conf.Atari, conf.CategoricalExploration)
@@ -1372,43 +1189,6 @@ class Carla_BC(conf.Preset):
self.evaluate_every_x_training_iterations = 5000
class Doom_Basic_BC(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.BC, conf.Doom, conf.ExplorationParameters)
self.env.level = 'basic'
self.agent.load_memory_from_file_path = 'datasets/doom_basic.p'
self.learning_rate = 0.0005
self.num_heatup_steps = 0
self.evaluation_episodes = 5
self.batch_size = 120
self.evaluate_every_x_training_iterations = 100
self.num_training_iterations = 2000
class Doom_Defend_BC(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.BC, conf.Doom, conf.ExplorationParameters)
self.env.level = 'defend'
self.agent.load_memory_from_file_path = 'datasets/doom_defend.p'
self.learning_rate = 0.0005
self.num_heatup_steps = 0
self.evaluation_episodes = 5
self.batch_size = 120
self.evaluate_every_x_training_iterations = 100
class Doom_Deathmatch_BC(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.BC, conf.Doom, conf.ExplorationParameters)
self.env.level = 'deathmatch'
self.agent.load_memory_from_file_path = 'datasets/doom_deathmatch.p'
self.learning_rate = 0.0005
self.num_heatup_steps = 0
self.evaluation_episodes = 5
self.batch_size = 120
self.evaluate_every_x_training_iterations = 100
class MontezumaRevenge_BC(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.BC, conf.Atari, conf.ExplorationParameters)