1
0
mirror of https://github.com/gryf/coach.git synced 2026-02-15 05:25:55 +01:00

batchnorm fixes + disabling batchnorm in DDPG (#353)

Co-authored-by: James Casbon <casbon+gh@gmail.com>
This commit is contained in:
Gal Leibovich
2019-06-23 11:28:22 +03:00
committed by GitHub
parent 7b5d6a3f03
commit d6795bd524
22 changed files with 105 additions and 50 deletions

View File

@@ -270,8 +270,11 @@ class TensorFlowArchitecture(Architecture):
elif self.network_is_trainable:
# not any of the above but is trainable? -> create an operation for applying the gradients to
# this network weights
self.update_weights_from_batch_gradients = self.optimizer.apply_gradients(
zip(self.weights_placeholders, self.weights), global_step=self.global_step)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope=self.full_name)
with tf.control_dependencies(update_ops):
self.update_weights_from_batch_gradients = self.optimizer.apply_gradients(
zip(self.weights_placeholders, self.weights), global_step=self.global_step)
def set_session(self, sess):
self.sess = sess
@@ -414,13 +417,16 @@ class TensorFlowArchitecture(Architecture):
return feed_dict
def apply_and_reset_gradients(self, gradients, scaler=1.):
def apply_and_reset_gradients(self, gradients, scaler=1., additional_inputs=None):
"""
Applies the given gradients to the network weights and resets the accumulation placeholder
:param gradients: The gradients to use for the update
:param scaler: A scaling factor that allows rescaling the gradients before applying them
:param additional_inputs: optional additional inputs required for when applying the gradients (e.g. batchnorm's
update ops also requires the inputs)
"""
self.apply_gradients(gradients, scaler)
self.apply_gradients(gradients, scaler, additional_inputs=additional_inputs)
self.reset_accumulated_gradients()
def wait_for_all_workers_to_lock(self, lock: str, include_only_training_workers: bool=False):
@@ -460,13 +466,16 @@ class TensorFlowArchitecture(Architecture):
self.wait_for_all_workers_to_lock('release', include_only_training_workers=include_only_training_workers)
self.sess.run(self.release_init)
def apply_gradients(self, gradients, scaler=1.):
def apply_gradients(self, gradients, scaler=1., additional_inputs=None):
"""
Applies the given gradients to the network weights
:param gradients: The gradients to use for the update
:param scaler: A scaling factor that allows rescaling the gradients before applying them.
The gradients will be MULTIPLIED by this factor
:param additional_inputs: optional additional inputs required for when applying the gradients (e.g. batchnorm's
update ops also requires the inputs)
"""
if self.network_parameters.async_training or not isinstance(self.ap.task_parameters, DistributedTaskParameters):
if hasattr(self, 'global_step') and not self.network_is_local:
self.sess.run(self.inc_step)
@@ -503,6 +512,8 @@ class TensorFlowArchitecture(Architecture):
# async distributed training / distributed training with independent optimizer
# / non-distributed training - just apply the gradients
feed_dict = dict(zip(self.weights_placeholders, gradients))
if additional_inputs is not None:
feed_dict = {**feed_dict, **self.create_feed_dict(additional_inputs)}
self.sess.run(self.update_weights_from_batch_gradients, feed_dict=feed_dict)
# release barrier

View File

@@ -185,6 +185,7 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
embedder_path = embedder_params.path(emb_type)
embedder_params_copy = copy.copy(embedder_params)
embedder_params_copy.is_training = self.is_training
embedder_params_copy.activation_function = utils.get_activation_function(embedder_params.activation_function)
embedder_params_copy.input_rescaling = embedder_params_copy.input_rescaling[emb_type]
embedder_params_copy.input_offset = embedder_params_copy.input_offset[emb_type]
@@ -204,6 +205,7 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
middleware_path = middleware_params.path
middleware_params_copy = copy.copy(middleware_params)
middleware_params_copy.activation_function = utils.get_activation_function(middleware_params.activation_function)
middleware_params_copy.is_training = self.is_training
module = dynamic_import_and_instantiate_module_from_params(middleware_params_copy, path=middleware_path)
return module
@@ -218,6 +220,7 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
head_path = head_params.path
head_params_copy = copy.copy(head_params)
head_params_copy.activation_function = utils.get_activation_function(head_params_copy.activation_function)
head_params_copy.is_training = self.is_training
return dynamic_import_and_instantiate_module_from_params(head_params_copy, path=head_path, extra_kwargs={
'agent_parameters': self.ap, 'spaces': self.spaces, 'network_name': self.network_wrapper_name,
'head_idx': head_idx, 'is_local': self.network_is_local})
@@ -339,7 +342,11 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
head_count += 1
# model weights
self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.full_name)
if not self.distributed_training or self.network_is_global:
self.weights = [var for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.full_name) if
'global_step' not in var.name]
else:
self.weights = [var for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.full_name)]
# Losses
self.losses = tf.losses.get_losses(self.full_name)

View File

@@ -26,9 +26,9 @@ from rl_coach.spaces import SpacesDefinition
class DDPGActor(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='tanh',
batchnorm: bool=True, dense_layer=Dense):
batchnorm: bool=True, dense_layer=Dense, is_training=False):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
dense_layer=dense_layer, is_training=is_training)
self.name = 'ddpg_actor_head'
self.return_type = ActionProbabilities
@@ -50,7 +50,7 @@ class DDPGActor(Head):
batchnorm=self.batchnorm,
activation_function=self.activation_function,
dropout_rate=0,
is_training=False,
is_training=self.is_training,
name="BatchnormActivationDropout_0")[-1]
self.policy_mean = tf.multiply(policy_values_mean, self.output_scale, name='output_mean')

View File

@@ -40,7 +40,7 @@ class Head(object):
"""
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int=0, loss_weight: float=1., is_local: bool=True, activation_function: str='relu',
dense_layer=Dense):
dense_layer=Dense, is_training=False):
self.head_idx = head_idx
self.network_name = network_name
self.network_parameters = agent_parameters.network_wrappers[self.network_name]
@@ -64,6 +64,7 @@ class Head(object):
self.dense_layer = Dense
else:
self.dense_layer = convert_layer_class(self.dense_layer)
self.is_training = is_training
def __call__(self, input_layer):
"""

View File

@@ -26,6 +26,9 @@ from rl_coach.architectures.tensorflow_components import utils
def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout_rate, is_training, name):
layers = [input_layer]
# Rationale: passing a bool here will mean that batchnorm and or activation will never activate
assert not isinstance(is_training, bool)
# batchnorm
if batchnorm:
layers.append(

View File

@@ -17,7 +17,7 @@ from typing import Union, List
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.layers import batchnorm_activation_dropout, Dense
from rl_coach.architectures.tensorflow_components.layers import Dense
from rl_coach.architectures.tensorflow_components.middlewares.middleware import Middleware
from rl_coach.base_parameters import MiddlewareScheme
from rl_coach.core_types import Middleware_FC_Embedding

View File

@@ -18,7 +18,7 @@
import numpy as np
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.layers import batchnorm_activation_dropout, Dense
from rl_coach.architectures.tensorflow_components.layers import Dense
from rl_coach.architectures.tensorflow_components.middlewares.middleware import Middleware
from rl_coach.base_parameters import MiddlewareScheme
from rl_coach.core_types import Middleware_LSTM_Embedding