1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

using the CoRL2017 experiment suite for CARLA_CIL

This commit is contained in:
itaicaspi-intel
2018-09-13 16:59:22 +03:00
parent 06c969951e
commit e8a2b679d1
6 changed files with 44 additions and 28 deletions

View File

@@ -29,6 +29,7 @@ class CILAlgorithmParameters(AlgorithmParameters):
def __init__(self):
super().__init__()
self.collect_new_data = False
self.state_key_with_the_class_index = 'high_level_command'
class CILNetworkParameters(NetworkParameters):
@@ -63,7 +64,7 @@ class CILAgent(ImitationAgent):
self.current_high_level_control = 0
def choose_action(self, curr_state):
self.current_high_level_control = curr_state['high_level_command']
self.current_high_level_control = curr_state[self.ap.algorithm.state_key_with_the_class_index]
return super().choose_action(curr_state)
def extract_action_values(self, prediction):
@@ -74,7 +75,7 @@ class CILAgent(ImitationAgent):
target_values = self.networks['main'].online_network.predict({**batch.states(network_keys)})
branch_to_update = batch.states(['high_level_command'])['high_level_command']
branch_to_update = batch.states([self.ap.algorithm.state_key_with_the_class_index])[self.ap.algorithm.state_key_with_the_class_index]
for idx, branch in enumerate(branch_to_update):
target_values[branch][idx] = batch.actions()[idx]

View File

@@ -34,6 +34,7 @@ try:
from carla.sensor import Camera
from carla.client import VehicleControl
from carla.planner.planner import Planner
from carla.driving_benchmark.experiment_suites.experiment_suite import ExperimentSuite
except ImportError:
from rl_coach.logger import failed_imports
failed_imports.append("CARLA")
@@ -103,7 +104,8 @@ class CarlaEnvironmentParameters(EnvironmentParameters):
self.server_width = 720
self.camera_height = 128
self.camera_width = 180
self.config = None #'environments/CarlaSettings.ini' # TODO: remove the config to prevent confusion
self.experiment_suite = None # an optional CARLA experiment suite to use
self.config = None
self.level = 'town1'
self.quality = self.Quality.LOW
self.cameras = [CameraTypes.FRONT]
@@ -126,7 +128,7 @@ class CarlaEnvironment(Environment):
seed: int, frame_skip: int, human_control: bool, custom_reward_threshold: Union[int, float],
visualization_parameters: VisualizationParameters,
server_height: int, server_width: int, camera_height: int, camera_width: int,
verbose: bool, config: str, episode_max_time: int,
verbose: bool, experiment_suite: ExperimentSuite, config: str, episode_max_time: int,
allow_braking: bool, quality: CarlaEnvironmentParameters.Quality,
cameras: List[CameraTypes], weather_id: List[int], experiment_path: str,
num_speedup_steps: int, max_speed: float, **kwargs):
@@ -161,6 +163,7 @@ class CarlaEnvironment(Environment):
high=255)
# setup server settings
self.experiment_suite = experiment_suite
self.config = config
if self.config:
# load settings from file
@@ -191,12 +194,17 @@ class CarlaEnvironment(Environment):
# open the client
self.game = CarlaClient(self.host, self.port, timeout=99999999)
self.game.connect()
scene = self.game.load_settings(self.settings)
if self.experiment_suite:
self.current_experiment = self.experiment_suite.get_experiments()[0]
scene = self.game.load_settings(self.current_experiment.conditions)
else:
scene = self.game.load_settings(self.settings)
# get available start positions
self.positions = scene.player_start_spots
self.num_pos = len(self.positions)
self.iterator_start_positions = 0
self.num_positions = len(self.positions)
self.current_start_position_idx = 0
self.current_pose = 0
# action space
self.action_space = BoxActionSpace(shape=2, low=np.array([-1, -1]), high=np.array([1, 1]))
@@ -391,18 +399,24 @@ class CarlaEnvironment(Environment):
self.game.send_control(self.control)
def _restart_environment_episode(self, force_environment_reset=False):
self.iterator_start_positions += 1
if self.iterator_start_positions >= self.num_pos:
self.iterator_start_positions = 0
# select start and end positions
if self.experiment_suite:
# if an expeirent suite is available, follow its given poses
self.current_start_position_idx = self.current_experiment.poses[self.current_pose][0]
self.current_goal = self.current_experiment.poses[self.current_pose][1]
self.current_pose += 1
else:
# go over all the possible positions in a cyclic manner
self.current_start_position_idx = (self.current_start_position_idx + 1) % self.num_positions
# choose a random goal destination TODO: follow the CoRL destinations and start positions
self.current_goal = random.choice(self.positions)
try:
self.game.start_episode(self.iterator_start_positions)
self.game.start_episode(self.current_start_position_idx)
except:
self.game.connect()
self.game.start_episode(self.iterator_start_positions)
# choose a random goal destination TODO: follow the CoRL destinations and start positions
self.current_goal = random.choice(self.positions)
self.game.start_episode(self.current_start_position_idx)
# start the game with some initial speed
for i in range(self.num_speedup_steps):

View File

@@ -1,10 +1,17 @@
import os
import sys
import numpy as np
# make sure you have $CARLA_ROOT/PythonClient in your PYTHONPATH
from carla.driving_benchmark.experiment_suites import CoRL2017
from rl_coach.agents.cil_agent import CILAgentParameters
from rl_coach.architectures.tensorflow_components.architecture import Conv2d, Dense
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters
from rl_coach.architectures.tensorflow_components.heads.cil_head import RegressionHeadParameters
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
from rl_coach.base_parameters import VisualizationParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
from rl_coach.environments.carla_environment import CarlaEnvironmentParameters, CameraTypes
from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
from rl_coach.filters.filter import InputFilter
from rl_coach.filters.observation.observation_crop_filter import ObservationCropFilter
@@ -12,17 +19,10 @@ from rl_coach.filters.observation.observation_reduction_by_sub_parts_name_filter
ObservationReductionBySubPartsNameFilter
from rl_coach.filters.observation.observation_rescale_to_size_filter import ObservationRescaleToSizeFilter
from rl_coach.filters.observation.observation_to_uint8_filter import ObservationToUInt8Filter
from rl_coach.schedules import ConstantSchedule
from rl_coach.spaces import ImageObservationSpace
from rl_coach.agents.cil_agent import CILAgentParameters
from rl_coach.architectures.tensorflow_components.heads.cil_head import RegressionHeadParameters
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.base_parameters import VisualizationParameters
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod
from rl_coach.schedules import ConstantSchedule
from rl_coach.spaces import ImageObservationSpace
####################
# Graph Scheduling #
@@ -116,8 +116,9 @@ env_params.level = 'town1'
env_params.cameras = [CameraTypes.FRONT]
env_params.camera_height = 600
env_params.camera_width = 800
env_params.allow_braking = True
env_params.allow_braking = False
env_params.quality = CarlaEnvironmentParameters.Quality.EPIC
env_params.experiment_suite = CoRL2017('Town01')
vis_params = VisualizationParameters()
vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]