1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00
Files
coach/rl_coach/presets/CARLA_CIL.py
2018-09-13 16:59:22 +03:00

129 lines
6.5 KiB
Python

import numpy as np
# make sure you have $CARLA_ROOT/PythonClient in your PYTHONPATH
from carla.driving_benchmark.experiment_suites import CoRL2017
from rl_coach.agents.cil_agent import CILAgentParameters
from rl_coach.architectures.tensorflow_components.architecture import Conv2d, Dense
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters
from rl_coach.architectures.tensorflow_components.heads.cil_head import RegressionHeadParameters
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
from rl_coach.base_parameters import VisualizationParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
from rl_coach.environments.carla_environment import CarlaEnvironmentParameters, CameraTypes
from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
from rl_coach.filters.filter import InputFilter
from rl_coach.filters.observation.observation_crop_filter import ObservationCropFilter
from rl_coach.filters.observation.observation_reduction_by_sub_parts_name_filter import \
ObservationReductionBySubPartsNameFilter
from rl_coach.filters.observation.observation_rescale_to_size_filter import ObservationRescaleToSizeFilter
from rl_coach.filters.observation.observation_to_uint8_filter import ObservationToUInt8Filter
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.schedules import ConstantSchedule
from rl_coach.spaces import ImageObservationSpace
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = TrainingSteps(500)
schedule_params.evaluation_steps = EnvironmentEpisodes(5)
schedule_params.heatup_steps = EnvironmentSteps(0)
################
# Agent Params #
################
agent_params = CILAgentParameters()
# forward camera and measurements input
agent_params.network_wrappers['main'].input_embedders_parameters = {
'forward_camera': InputEmbedderParameters(scheme=[Conv2d([32, 5, 2]),
Conv2d([32, 3, 1]),
Conv2d([64, 3, 2]),
Conv2d([64, 3, 1]),
Conv2d([128, 3, 2]),
Conv2d([128, 3, 1]),
Conv2d([256, 3, 1]),
Conv2d([256, 3, 1]),
Dense([512]),
Dense([512])],
dropout=True,
batchnorm=True),
'measurements': InputEmbedderParameters(scheme=[Dense([128]),
Dense([128])])
}
# TODO: batch norm is currently applied to the fc layers which is not desired
# TODO: dropout should be configured differenetly per layer [1.0] * 8 + [0.7] * 2 + [0.5] * 2 + [0.5] * 1 + [0.5, 1.] * 5
# simple fc middleware
agent_params.network_wrappers['main'].middleware_parameters = FCMiddlewareParameters(scheme=[Dense([512])])
# output branches
agent_params.network_wrappers['main'].heads_parameters = [
RegressionHeadParameters(),
RegressionHeadParameters(),
RegressionHeadParameters(),
RegressionHeadParameters()
]
# agent_params.network_wrappers['main'].num_output_head_copies = 4 # follow lane, left, right, straight
agent_params.network_wrappers['main'].rescale_gradient_from_head_by_factor = [1, 1, 1, 1]
agent_params.network_wrappers['main'].loss_weights = [1, 1, 1, 1]
# TODO: there should be another head predicting the speed which is connected directly to the forward camera embedding
agent_params.network_wrappers['main'].batch_size = 120
agent_params.network_wrappers['main'].learning_rate = 0.0002
# crop and rescale the image + use only the forward speed measurement
agent_params.input_filter = InputFilter()
agent_params.input_filter.add_observation_filter('forward_camera', 'cropping',
ObservationCropFilter(crop_low=np.array([115, 0, 0]),
crop_high=np.array([510, -1, -1])))
agent_params.input_filter.add_observation_filter('forward_camera', 'rescale',
ObservationRescaleToSizeFilter(
ImageObservationSpace(np.array([88, 200, 3]), high=255)))
agent_params.input_filter.add_observation_filter('forward_camera', 'to_uint8', ObservationToUInt8Filter(0, 255))
agent_params.input_filter.add_observation_filter(
'measurements', 'select_speed',
ObservationReductionBySubPartsNameFilter(
["forward_speed"], reduction_method=ObservationReductionBySubPartsNameFilter.ReductionMethod.Keep))
# no exploration is used
agent_params.exploration = AdditiveNoiseParameters()
agent_params.exploration.noise_percentage_schedule = ConstantSchedule(0)
agent_params.exploration.evaluation_noise_percentage = 0
# no playing during the training phase
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(0)
# the CARLA dataset should be downloaded through the following repository:
# https://github.com/carla-simulator/imitation-learning
# the dataset should then be converted to the Coach format using the script utils/carla_dataset_to_replay_buffer.py
# the path to the converted dataset should be updated below
agent_params.memory.load_memory_from_file_path = "./datasets/carla_train_set_replay_buffer.p"
agent_params.memory.state_key_with_the_class_index = 'high_level_command'
agent_params.memory.num_classes = 4
###############
# Environment #
###############
env_params = CarlaEnvironmentParameters()
env_params.level = 'town1'
env_params.cameras = [CameraTypes.FRONT]
env_params.camera_height = 600
env_params.camera_width = 800
env_params.allow_braking = False
env_params.quality = CarlaEnvironmentParameters.Quality.EPIC
env_params.experiment_suite = CoRL2017('Town01')
vis_params = VisualizationParameters()
vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]
vis_params.dump_mp4 = True
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=vis_params)