mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
* GraphManager.set_session also sets self.sess * make sure that GraphManager.fetch_from_worker uses training phase * remove unnecessary phase setting in training worker * reorganize rollout worker * provide default name to GlobalVariableSaver.__init__ since it isn't really used anyway * allow dividing TrainingSteps and EnvironmentSteps * add timestamps to the log * added redis data store * conflict merge fix
61 lines
2.8 KiB
Python
61 lines
2.8 KiB
Python
from rl_coach.agents.ppo_agent import PPOAgentParameters
|
|
from rl_coach.architectures.layers import Dense
|
|
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters, DistributedCoachSynchronizationType
|
|
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
|
from rl_coach.environments.environment import SingleLevelSelection
|
|
from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2
|
|
from rl_coach.filters.filter import InputFilter
|
|
from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter
|
|
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
|
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
|
|
|
####################
|
|
# Graph Scheduling #
|
|
####################
|
|
schedule_params = ScheduleParameters()
|
|
schedule_params.improve_steps = TrainingSteps(1e10)
|
|
schedule_params.steps_between_evaluation_periods = EnvironmentSteps(4000)
|
|
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
|
|
schedule_params.heatup_steps = EnvironmentSteps(0)
|
|
|
|
#########
|
|
# Agent #
|
|
#########
|
|
agent_params = PPOAgentParameters()
|
|
agent_params.network_wrappers['actor'].learning_rate = 5e-5
|
|
agent_params.network_wrappers['critic'].learning_rate = 5e-5
|
|
|
|
agent_params.network_wrappers['actor'].input_embedders_parameters['observation'].scheme = [Dense(64)]
|
|
agent_params.network_wrappers['actor'].middleware_parameters.scheme = [Dense(64)]
|
|
agent_params.network_wrappers['critic'].input_embedders_parameters['observation'].scheme = [Dense(64)]
|
|
agent_params.network_wrappers['critic'].middleware_parameters.scheme = [Dense(64)]
|
|
|
|
agent_params.input_filter = InputFilter()
|
|
agent_params.input_filter.add_observation_filter('observation', 'normalize', ObservationNormalizationFilter())
|
|
|
|
agent_params.algorithm.initial_kl_coefficient = 0.2
|
|
agent_params.algorithm.gae_lambda = 1.0
|
|
|
|
# Distributed Coach synchronization type.
|
|
agent_params.algorithm.distributed_coach_synchronization_type = DistributedCoachSynchronizationType.SYNC
|
|
|
|
###############
|
|
# Environment #
|
|
###############
|
|
env_params = GymVectorEnvironment(level=SingleLevelSelection(mujoco_v2))
|
|
|
|
|
|
########
|
|
# Test #
|
|
########
|
|
preset_validation_params = PresetValidationParameters()
|
|
preset_validation_params.test = True
|
|
preset_validation_params.min_reward_threshold = 400
|
|
preset_validation_params.max_episodes_to_achieve_reward = 3000
|
|
preset_validation_params.reward_test_level = 'inverted_pendulum'
|
|
preset_validation_params.trace_test_levels = ['inverted_pendulum', 'hopper']
|
|
|
|
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
|
schedule_params=schedule_params, vis_params=VisualizationParameters(),
|
|
preset_validation_params=preset_validation_params)
|