1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/presets/Mujoco_PPO.py
Zach Dwiel 7b0fccb041 Add RedisDataStore (#295)
* GraphManager.set_session also sets self.sess

* make sure that GraphManager.fetch_from_worker uses training phase

* remove unnecessary phase setting in training worker

* reorganize rollout worker

* provide default name to GlobalVariableSaver.__init__ since it isn't really used anyway

* allow dividing TrainingSteps and EnvironmentSteps

* add timestamps to the log

* added redis data store

* conflict merge fix
2019-08-28 21:15:58 +03:00

61 lines
2.8 KiB
Python

from rl_coach.agents.ppo_agent import PPOAgentParameters
from rl_coach.architectures.layers import Dense
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters, DistributedCoachSynchronizationType
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
from rl_coach.environments.environment import SingleLevelSelection
from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2
from rl_coach.filters.filter import InputFilter
from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(1e10)
schedule_params.steps_between_evaluation_periods = EnvironmentSteps(4000)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(0)
#########
# Agent #
#########
agent_params = PPOAgentParameters()
agent_params.network_wrappers['actor'].learning_rate = 5e-5
agent_params.network_wrappers['critic'].learning_rate = 5e-5
agent_params.network_wrappers['actor'].input_embedders_parameters['observation'].scheme = [Dense(64)]
agent_params.network_wrappers['actor'].middleware_parameters.scheme = [Dense(64)]
agent_params.network_wrappers['critic'].input_embedders_parameters['observation'].scheme = [Dense(64)]
agent_params.network_wrappers['critic'].middleware_parameters.scheme = [Dense(64)]
agent_params.input_filter = InputFilter()
agent_params.input_filter.add_observation_filter('observation', 'normalize', ObservationNormalizationFilter())
agent_params.algorithm.initial_kl_coefficient = 0.2
agent_params.algorithm.gae_lambda = 1.0
# Distributed Coach synchronization type.
agent_params.algorithm.distributed_coach_synchronization_type = DistributedCoachSynchronizationType.SYNC
###############
# Environment #
###############
env_params = GymVectorEnvironment(level=SingleLevelSelection(mujoco_v2))
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.test = True
preset_validation_params.min_reward_threshold = 400
preset_validation_params.max_episodes_to_achieve_reward = 3000
preset_validation_params.reward_test_level = 'inverted_pendulum'
preset_validation_params.trace_test_levels = ['inverted_pendulum', 'hopper']
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=VisualizationParameters(),
preset_validation_params=preset_validation_params)