mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
* Add Robosuite parameters for all env types + initialize env flow * Init flow done * Rest of Environment API complete for RobosuiteEnvironment * RobosuiteEnvironment changes * Observation stacking filter * Add proper frame_skip in addition to control_freq * Hardcode Coach rendering to 'frontview' camera * Robosuite_Lift_DDPG preset + Robosuite env updates * Move observation stacking filter from env to preset * Pre-process observation - concatenate depth map (if exists) to image and object state (if exists) to robot state * Preset parameters based on Surreal DDPG parameters, taken from: https://github.com/SurrealAI/surreal/blob/master/surreal/main/ddpg_configs.py * RobosuiteEnvironment fixes - working now with PyGame rendering * Preset minor modifications * ObservationStackingFilter - option to concat non-vector observations * Consider frame skip when setting horizon in robosuite env * Robosuite lift preset - update heatup length and training interval * Robosuite env - change control_freq to 10 to match Surreal usage * Robosuite clipped PPO preset * Distribute multiple workers (-n #) over multiple GPUs * Clipped PPO memory optimization from @shadiendrawis * Fixes to evaluation only workers * RoboSuite_ClippedPPO: Update training interval * Undo last commit (update training interval) * Fix "doube-negative" if conditions * multi-agent single-trainer clipped ppo training with cartpole * cleanups (not done yet) + ~tuned hyper-params for mast * Switch to Robosuite v1 APIs * Change presets to IK controller * more cleanups + enabling evaluation worker + better logging * RoboSuite_Lift_ClippedPPO updates * Fix major bug in obs normalization filter setup * Reduce coupling between Robosuite API and Coach environment * Now only non task-specific parameters are explicitly defined in Coach * Removed a bunch of enums of Robosuite elements, using simple strings instead * With this change new environments/robots/controllers in Robosuite can be used immediately in Coach * MAST: better logging of actor-trainer interaction + bug fixes + performance improvements. Still missing: fixed pubsub for obs normalization running stats + logging for trainer signals * lstm support for ppo * setting JOINT VELOCITY action space by default + fix for EveryNEpisodes video dump filter + new TaskIDDumpFilter + allowing or between video dump filters * Separate Robosuite clipped PPO preset for the non-MAST case * Add flatten layer to architectures and use it in Robosuite presets This is required for embedders that mix conv and dense TODO: Add MXNet implementation * publishing running_stats together with the published policy + hyper-param for when to publish a policy + cleanups * bug-fix for memory leak in MAST * Bugfix: Return value in TF BatchnormActivationDropout.to_tf_instance * Explicit activations in embedder scheme so there's no ReLU after flatten * Add clipped PPO heads with configurable dense layers at the beginning * This is a workaround needed to mimic Surreal-PPO, where the CNN and LSTM are shared between actor and critic but the FC layers are not shared * Added a "SchemeBuilder" class, currently only used for the new heads but we can change Middleware and Embedder implementations to use it as well * Video dump setting fix in basic preset * logging screen output to file * coach to start the redis-server for a MAST run * trainer drops off-policy data + old policy in ClippedPPO updates only after policy was published + logging free memory stats + actors check for a new policy only at the beginning of a new episode + fixed a bug where the trainer was logging "Training Reward = 0", causing dashboard to incorrectly display the signal * Add missing set_internal_state function in TFSharedRunningStats * Robosuite preset - use SingleLevelSelect instead of hard-coded level * policy ID published directly on Redis * Small fix when writing to log file * Major bugfix in Robosuite presets - pass dense sizes to heads * RoboSuite_Lift_ClippedPPO hyper-params update * add horizon and value bootstrap to GAE calculation, fix A3C with LSTM * adam hyper-params from mujoco * updated MAST preset with IK_POSE_POS controller * configurable initialization for policy stdev + custom extra noise per actor + logging of policy stdev to dashboard * values loss weighting of 0.5 * minor fixes + presets * bug-fix for MAST where the old policy in the trainer had kept updating every training iter while it should only update after every policy publish * bug-fix: reset_internal_state was not called by the trainer * bug-fixes in the lstm flow + some hyper-param adjustments for CartPole_ClippedPPO_LSTM -> training and sometimes reaches 200 * adding back the horizon hyper-param - a messy commit * another bug-fix missing from prev commit * set control_freq=2 to match action_scale 0.125 * ClippedPPO with MAST cleanups and some preps for TD3 with MAST * TD3 presets. RoboSuite_Lift_TD3 seems to work well with multi-process runs (-n 8) * setting termination on collision to be on by default * bug-fix following prev-prev commit * initial cube exploration environment with TD3 commit * bug fix + minor refactoring * several parameter changes and RND debugging * Robosuite Gym wrapper + Rename TD3_Random* -> Random* * algorithm update * Add RoboSuite v1 env + presets (to eventually replace non-v1 ones) * Remove grasping presets, keep only V1 exp. presets (w/o V1 tag) * Keep just robosuite V1 env as the 'robosuite_environment' module * Exclude Robosuite and MAST presets from integration tests * Exclude LSTM and MAST presets from golden tests * Fix mistakenly removed import * Revert debug changes in ReaderWriterLock * Try another way to exclude LSTM/MAST golden tests * Remove debug prints * Remove PreDense heads, unused in the end * Missed removing an instance of PreDense head * Remove MAST, not required for this PR * Undo unused concat option in ObservationStackingFilter * Remove LSTM updates, not required in this PR * Update README.md * code changes for the exploration flow to work with robosuite master branch * code cleanup + documentation * jupyter tutorial for the goal-based exploration + scatter plot * typo fix * Update README.md * seprate parameter for the obs-goal observation + small fixes * code clarity fixes * adjustment in tutorial 5 * Update tutorial * Update tutorial Co-authored-by: Guy Jacob <guy.jacob@intel.com> Co-authored-by: Gal Leibovich <gal.leibovich@intel.com> Co-authored-by: shadi.endrawis <sendrawi@aipg-ra-skx-03.ra.intel.com>
411 lines
18 KiB
Python
411 lines
18 KiB
Python
#
|
|
# Copyright (c) 2019 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import copy
|
|
from typing import Union
|
|
from collections import OrderedDict
|
|
from random import shuffle
|
|
import os
|
|
from PIL import Image
|
|
import joblib
|
|
|
|
import numpy as np
|
|
|
|
from rl_coach.agents.agent import Agent
|
|
from rl_coach.agents.td3_agent import TD3Agent, TD3CriticNetworkParameters, TD3ActorNetworkParameters, \
|
|
TD3AlgorithmParameters, TD3AgentExplorationParameters
|
|
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
|
from rl_coach.base_parameters import NetworkParameters, AgentParameters, MiddlewareScheme
|
|
from rl_coach.core_types import Transition, Batch
|
|
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
|
|
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
|
|
from rl_coach.architectures.head_parameters import RNDHeadParameters
|
|
from rl_coach.utilities.shared_running_stats import NumpySharedRunningStats
|
|
from rl_coach.logger import screen
|
|
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
|
from rl_coach.schedules import LinearSchedule
|
|
|
|
|
|
class RNDNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters(activation_function='leaky_relu',
|
|
input_rescaling={'image': 1.0})}
|
|
self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Empty)
|
|
self.heads_parameters = [RNDHeadParameters()]
|
|
self.create_target_network = False
|
|
self.optimizer_type = 'Adam'
|
|
self.batch_size = 100
|
|
self.learning_rate = 0.0001
|
|
self.should_get_softmax_probabilities = False
|
|
|
|
|
|
class TD3ExplorationAlgorithmParameters(TD3AlgorithmParameters):
|
|
"""
|
|
:param rnd_sample_size: (int)
|
|
The number of states in each RND training iteration.
|
|
|
|
:param rnd_batch_size: (int)
|
|
Batch size for the RND optimization cycle.
|
|
|
|
:param rnd_optimization_epochs: (int)
|
|
Number of epochs for the RND optimization cycle.
|
|
|
|
:param td3_training_ratio: (float)
|
|
The ratio between TD3 training steps and the number of steps in each episode (must be a positive number).
|
|
|
|
:param identity_goal_sample_rate: (float)
|
|
For the goal-based agent, this number indicates the probability to sample a goal that is the identity
|
|
(must be a number between 0 and 1).
|
|
|
|
:param env_obs_key: (str)
|
|
The name of the state key for the camera observation from the environment.
|
|
|
|
:param agent_obs_key: (str)
|
|
The name of the state key for the camera observation for the agent. This key has to be different
|
|
from env_obs_key in case the agent modifies the observation from the environment. For example,
|
|
the goal-based agent concatenates a goal image to the image observation from the environment.
|
|
|
|
:param replay_buffer_save_steps: (int)
|
|
The number of steps to periodically save the replay buffer.
|
|
|
|
:param replay_buffer_save_path: (str or None)
|
|
A path to save the replay buffer to. if set to None, the replay buffer will be saved in the
|
|
experiment directory.
|
|
"""
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.rnd_sample_size = 2000
|
|
self.rnd_batch_size = 500
|
|
self.rnd_optimization_epochs = 4
|
|
self.td3_training_ratio = 1.0
|
|
self.identity_goal_sample_rate = 0.0
|
|
self.env_obs_key = 'camera'
|
|
self.agent_obs_key = 'camera'
|
|
self.replay_buffer_save_steps = 25000
|
|
self.replay_buffer_save_path = None
|
|
|
|
|
|
class TD3ExplorationAgentParameters(AgentParameters):
|
|
def __init__(self):
|
|
td3_exp_algorithm_params = TD3ExplorationAlgorithmParameters()
|
|
super().__init__(algorithm=td3_exp_algorithm_params,
|
|
exploration=TD3AgentExplorationParameters(),
|
|
memory=EpisodicExperienceReplayParameters(),
|
|
networks=OrderedDict([("actor", TD3ActorNetworkParameters()),
|
|
("critic",
|
|
TD3CriticNetworkParameters(td3_exp_algorithm_params.num_q_networks)),
|
|
("predictor", RNDNetworkParameters()),
|
|
("constant", RNDNetworkParameters())]))
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.td3_exp_agent:TD3ExplorationAgent'
|
|
|
|
|
|
class TD3ExplorationAgent(TD3Agent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
self.rnd_stats = NumpySharedRunningStats(name='RND_normalization', epsilon=1e-8)
|
|
self.rnd_stats.set_params()
|
|
self.rnd_obs_stats = NumpySharedRunningStats(name='RND_observation_normalization', epsilon=1e-8)
|
|
self.intrinsic_returns_estimate = None
|
|
|
|
def update_intrinsic_returns_estimate(self, rewards):
|
|
returns = np.zeros_like(rewards)
|
|
for i, r in enumerate(rewards):
|
|
if self.intrinsic_returns_estimate is None:
|
|
self.intrinsic_returns_estimate = r
|
|
else:
|
|
self.intrinsic_returns_estimate = \
|
|
self.intrinsic_returns_estimate * self.ap.algorithm.discount + r
|
|
returns[i] = self.intrinsic_returns_estimate
|
|
return returns
|
|
|
|
def prepare_rnd_inputs(self, batch):
|
|
env_obs_key = self.ap.algorithm.env_obs_key
|
|
next_states = batch.next_states([env_obs_key])
|
|
inputs = {env_obs_key: self.rnd_obs_stats.normalize(next_states[env_obs_key])}
|
|
return inputs
|
|
|
|
def handle_self_supervised_reward(self, batch):
|
|
"""
|
|
Allows agents to update the batch for self supervised learning
|
|
|
|
:param batch: original training batch
|
|
:return: updated traing batch
|
|
"""
|
|
return batch
|
|
|
|
def update_transition_before_adding_to_replay_buffer(self, transition: Transition) -> Transition:
|
|
"""
|
|
Allows agents to update the transition just before adding it to the replay buffer.
|
|
Can be useful for agents that want to tweak the reward, termination signal, etc.
|
|
|
|
:param transition: the transition to update
|
|
:return: the updated transition
|
|
"""
|
|
transition = super().update_transition_before_adding_to_replay_buffer(transition)
|
|
image = np.array(transition.state[self.ap.algorithm.env_obs_key])
|
|
if self.rnd_obs_stats.n < 1:
|
|
self.rnd_obs_stats.set_params(shape=image.shape, clip_values=[-5, 5])
|
|
self.rnd_obs_stats.push_val(np.expand_dims(image, 0))
|
|
return transition
|
|
|
|
def train_rnd(self):
|
|
if self.memory.num_transitions() == 0:
|
|
return
|
|
|
|
transitions = self.memory.transitions[-self.ap.algorithm.rnd_sample_size:]
|
|
dataset = Batch(transitions)
|
|
dataset_order = list(range(dataset.size))
|
|
batch_size = self.ap.algorithm.rnd_batch_size
|
|
for epoch in range(self.ap.algorithm.rnd_optimization_epochs):
|
|
shuffle(dataset_order)
|
|
total_loss = 0
|
|
total_grads = 0
|
|
for i in range(int(dataset.size / batch_size)):
|
|
start = i * batch_size
|
|
end = (i + 1) * batch_size
|
|
|
|
batch = Batch(list(np.array(dataset.transitions)[dataset_order[start:end]]))
|
|
inputs = self.prepare_rnd_inputs(batch)
|
|
|
|
const_embedding = self.networks['constant'].online_network.predict(inputs)
|
|
|
|
res = self.networks['predictor'].train_and_sync_networks(inputs, [const_embedding])
|
|
|
|
total_loss += res[0]
|
|
total_grads += res[2]
|
|
|
|
screen.log_dict(
|
|
OrderedDict([
|
|
("training epoch", epoch),
|
|
("dataset size", dataset.size),
|
|
("mean loss", total_loss / dataset.size),
|
|
("mean gradients", total_grads / dataset.size)
|
|
]),
|
|
prefix="RND Training"
|
|
)
|
|
|
|
def learn_from_batch(self, batch):
|
|
batch = self.handle_self_supervised_reward(batch)
|
|
return super().learn_from_batch(batch)
|
|
|
|
def train(self):
|
|
self.ap.algorithm.num_consecutive_training_steps = \
|
|
int(self.current_episode_steps_counter * self.ap.algorithm.td3_training_ratio)
|
|
return Agent.train(self)
|
|
|
|
def calculate_novelty(self, batch):
|
|
inputs = self.prepare_rnd_inputs(batch)
|
|
embedding = self.networks['constant'].online_network.predict(inputs)
|
|
prediction = self.networks['predictor'].online_network.predict(inputs)
|
|
prediction_error = np.mean((embedding - prediction) ** 2, axis=1)
|
|
return prediction_error
|
|
|
|
def save_replay_buffer(self, dir_path=None):
|
|
if dir_path is None:
|
|
dir_path = os.path.join(self.parent_level_manager.parent_graph_manager.task_parameters.experiment_path,
|
|
'replay_buffer')
|
|
if not os.path.exists(dir_path):
|
|
os.mkdir(dir_path)
|
|
|
|
path = os.path.join(dir_path, 'RB_{}.joblib.bz2'.format(type(self).__name__))
|
|
joblib.dump(self.memory.get_all_complete_episodes(), path, compress=('bz2', 1))
|
|
|
|
screen.log('Saved replay buffer to: \"{}\" - Number of transitions: {}'.format(path,
|
|
self.memory.num_transitions()))
|
|
|
|
def handle_episode_ended(self) -> None:
|
|
super().handle_episode_ended()
|
|
|
|
if self.total_steps_counter % self.ap.algorithm.rnd_sample_size == 0:
|
|
self.train_rnd()
|
|
|
|
if self.total_steps_counter % self.ap.algorithm.replay_buffer_save_steps == 0:
|
|
self.save_replay_buffer(self.ap.algorithm.replay_buffer_save_path)
|
|
self.save_rnd_images(self.ap.algorithm.replay_buffer_save_path)
|
|
|
|
def save_rnd_images(self, dir_path=None):
|
|
if dir_path is None:
|
|
dir_path = os.path.join(self.parent_level_manager.parent_graph_manager.task_parameters.experiment_path,
|
|
'rnd_images')
|
|
else:
|
|
dir_path = os.path.join(dir_path, 'rnd_images')
|
|
if not os.path.exists(dir_path):
|
|
os.mkdir(dir_path)
|
|
transitions = self.memory.transitions
|
|
dataset = Batch(transitions)
|
|
batch_size = self.ap.algorithm.rnd_batch_size
|
|
novelties = []
|
|
for i in range(int(dataset.size / batch_size)):
|
|
start = i * batch_size
|
|
end = (i + 1) * batch_size
|
|
|
|
batch = Batch(dataset[start:end])
|
|
novelty = self.calculate_novelty(batch)
|
|
novelties.append(novelty)
|
|
novelties = np.concatenate(novelties)
|
|
sorted_indices = np.argsort(novelties)
|
|
sample_indices = sorted_indices[np.round(np.linspace(0, len(sorted_indices) - 1, 100)).astype(np.uint32)]
|
|
images = []
|
|
for si in sample_indices:
|
|
images.append(np.flip(transitions[si].next_state[self.ap.algorithm.env_obs_key], 0))
|
|
rows = []
|
|
for i in range(10):
|
|
rows.append(np.hstack(images[(i * 10):((i + 1) * 10)]))
|
|
image = np.vstack(rows)
|
|
image = Image.fromarray(image)
|
|
image.save('{}/{}_{}.jpeg'.format(dir_path, 'rnd_samples', len(transitions)))
|
|
|
|
|
|
class TD3IntrinsicRewardAgentParameters(TD3ExplorationAgentParameters):
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.td3_exp_agent:TD3IntrinsicRewardAgent'
|
|
|
|
|
|
class TD3IntrinsicRewardAgent(TD3ExplorationAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
|
|
def handle_self_supervised_reward(self, batch):
|
|
novelty = self.calculate_novelty(batch)
|
|
|
|
for i, t in enumerate(batch.transitions):
|
|
t.reward = novelty[i] / self.rnd_stats.std[0]
|
|
|
|
return batch
|
|
|
|
def handle_episode_ended(self) -> None:
|
|
super().handle_episode_ended()
|
|
novelty = self.calculate_novelty(Batch(self.memory.get_last_complete_episode().transitions))
|
|
self.rnd_stats.push_val(np.expand_dims(self.update_intrinsic_returns_estimate(novelty), -1))
|
|
|
|
|
|
class RandomAgentParameters(TD3ExplorationAgentParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.exploration = EGreedyParameters()
|
|
self.exploration.epsilon_schedule = LinearSchedule(1.0, 1.0, 500000000)
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.td3_exp_agent:RandomAgent'
|
|
|
|
|
|
class RandomAgent(TD3ExplorationAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
self.ap.algorithm.periodic_exploration_noise = None
|
|
self.ap.algorithm.rnd_sample_size = 100000000000
|
|
|
|
def train(self):
|
|
return 0
|
|
|
|
|
|
class TD3GoalBasedAgentParameters(TD3ExplorationAgentParameters):
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.td3_exp_agent:TD3GoalBasedAgent'
|
|
|
|
|
|
class TD3GoalBasedAgent(TD3ExplorationAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
self.goal = None
|
|
self.ap.algorithm.use_non_zero_discount_for_terminal_states = False
|
|
|
|
def concat_goal(self, state, goal_state):
|
|
ret = np.concatenate([state[self.ap.algorithm.env_obs_key], goal_state[self.ap.algorithm.env_obs_key]], axis=2)
|
|
return ret
|
|
|
|
def handle_self_supervised_reward(self, batch):
|
|
batch_size = self.ap.network_wrappers['actor'].batch_size
|
|
episode_indices = np.random.randint(self.memory.num_complete_episodes(), size=batch_size)
|
|
transitions = []
|
|
for e_idx in episode_indices:
|
|
episode = self.memory.get_all_complete_episodes()[e_idx]
|
|
transition_idx = np.random.randint(episode.length())
|
|
t = copy.copy(episode[transition_idx])
|
|
if np.random.rand(1) < self.ap.algorithm.identity_goal_sample_rate:
|
|
t.state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.state, t.state)
|
|
# this doesn't matter for learning but is set anyway so that the agent can pass it through the network
|
|
t.next_state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.next_state, t.state)
|
|
t.game_over = True
|
|
t.reward = 0
|
|
t.action = np.zeros_like(t.action)
|
|
else:
|
|
if transition_idx == episode.length() - 1:
|
|
goal = t
|
|
t.state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.state, t.next_state)
|
|
t.next_state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.next_state, t.next_state)
|
|
else:
|
|
goal_idx = np.random.randint(transition_idx, episode.length())
|
|
goal = episode.transitions[goal_idx]
|
|
t.state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.state, episode.transitions[goal_idx].next_state)
|
|
t.next_state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.next_state,
|
|
episode.transitions[goal_idx].next_state)
|
|
|
|
camera_equal = np.alltrue(np.equal(t.next_state[self.ap.algorithm.env_obs_key],
|
|
goal.next_state[self.ap.algorithm.env_obs_key]))
|
|
measurements_equal = np.alltrue(np.isclose(t.next_state['measurements'],
|
|
goal.next_state['measurements']))
|
|
t.game_over = camera_equal and measurements_equal
|
|
t.reward = -1
|
|
|
|
transitions.append(t)
|
|
|
|
return Batch(transitions)
|
|
|
|
def choose_action(self, curr_state):
|
|
if self.goal:
|
|
curr_state[self.ap.algorithm.agent_obs_key] = self.concat_goal(curr_state, self.goal.next_state)
|
|
else:
|
|
curr_state[self.ap.algorithm.agent_obs_key] = self.concat_goal(curr_state, curr_state)
|
|
|
|
return super().choose_action(curr_state)
|
|
|
|
def generate_goal(self):
|
|
if self.memory.num_transitions() == 0:
|
|
return
|
|
|
|
transitions = list(np.random.choice(self.memory.transitions,
|
|
min(self.ap.algorithm.rnd_sample_size,
|
|
self.memory.num_transitions()),
|
|
replace=False))
|
|
dataset = Batch(transitions)
|
|
batch_size = self.ap.algorithm.rnd_batch_size
|
|
self.goal = dataset[0]
|
|
|
|
max_novelty = 0
|
|
for i in range(int(dataset.size / batch_size)):
|
|
start = i * batch_size
|
|
end = (i + 1) * batch_size
|
|
|
|
novelty = self.calculate_novelty(Batch(dataset[start:end]))
|
|
|
|
curr_max = np.max(novelty)
|
|
if curr_max > max_novelty:
|
|
max_novelty = curr_max
|
|
idx = start + np.argmax(novelty)
|
|
self.goal = dataset[idx]
|
|
|
|
def handle_episode_ended(self) -> None:
|
|
super().handle_episode_ended()
|
|
self.generate_goal()
|