1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/environments/robosuite_environment.py
shadiendrawis 0896f43097 Robosuite exploration (#478)
* Add Robosuite parameters for all env types + initialize env flow

* Init flow done

* Rest of Environment API complete for RobosuiteEnvironment

* RobosuiteEnvironment changes

* Observation stacking filter
* Add proper frame_skip in addition to control_freq
* Hardcode Coach rendering to 'frontview' camera

* Robosuite_Lift_DDPG preset + Robosuite env updates

* Move observation stacking filter from env to preset
* Pre-process observation - concatenate depth map (if exists)
  to image and object state (if exists) to robot state
* Preset parameters based on Surreal DDPG parameters, taken from:
  https://github.com/SurrealAI/surreal/blob/master/surreal/main/ddpg_configs.py

* RobosuiteEnvironment fixes - working now with PyGame rendering

* Preset minor modifications

* ObservationStackingFilter - option to concat non-vector observations

* Consider frame skip when setting horizon in robosuite env

* Robosuite lift preset - update heatup length and training interval

* Robosuite env - change control_freq to 10 to match Surreal usage

* Robosuite clipped PPO preset

* Distribute multiple workers (-n #) over multiple GPUs

* Clipped PPO memory optimization from @shadiendrawis

* Fixes to evaluation only workers

* RoboSuite_ClippedPPO: Update training interval

* Undo last commit (update training interval)

* Fix "doube-negative" if conditions

* multi-agent single-trainer clipped ppo training with cartpole

* cleanups (not done yet) + ~tuned hyper-params for mast

* Switch to Robosuite v1 APIs

* Change presets to IK controller

* more cleanups + enabling evaluation worker + better logging

* RoboSuite_Lift_ClippedPPO updates

* Fix major bug in obs normalization filter setup

* Reduce coupling between Robosuite API and Coach environment

* Now only non task-specific parameters are explicitly defined
  in Coach
* Removed a bunch of enums of Robosuite elements, using simple
  strings instead
* With this change new environments/robots/controllers in Robosuite
  can be used immediately in Coach

* MAST: better logging of actor-trainer interaction + bug fixes + performance improvements.

Still missing: fixed pubsub for obs normalization running stats + logging for trainer signals

* lstm support for ppo

* setting JOINT VELOCITY action space by default + fix for EveryNEpisodes video dump filter + new TaskIDDumpFilter + allowing or between video dump filters

* Separate Robosuite clipped PPO preset for the non-MAST case

* Add flatten layer to architectures and use it in Robosuite presets

This is required for embedders that mix conv and dense

TODO: Add MXNet implementation

* publishing running_stats together with the published policy + hyper-param for when to publish a policy + cleanups

* bug-fix for memory leak in MAST

* Bugfix: Return value in TF BatchnormActivationDropout.to_tf_instance

* Explicit activations in embedder scheme so there's no ReLU after flatten

* Add clipped PPO heads with configurable dense layers at the beginning

* This is a workaround needed to mimic Surreal-PPO, where the CNN and
  LSTM are shared between actor and critic but the FC layers are not
  shared
* Added a "SchemeBuilder" class, currently only used for the new heads
  but we can change Middleware and Embedder implementations to use it
  as well

* Video dump setting fix in basic preset

* logging screen output to file

* coach to start the redis-server for a MAST run

* trainer drops off-policy data + old policy in ClippedPPO updates only after policy was published + logging free memory stats + actors check for a new policy only at the beginning of a new episode + fixed a bug where the trainer was logging "Training Reward = 0", causing dashboard to incorrectly display the signal

* Add missing set_internal_state function in TFSharedRunningStats

* Robosuite preset - use SingleLevelSelect instead of hard-coded level

* policy ID published directly on Redis

* Small fix when writing to log file

* Major bugfix in Robosuite presets - pass dense sizes to heads

* RoboSuite_Lift_ClippedPPO hyper-params update

* add horizon and value bootstrap to GAE calculation, fix A3C with LSTM

* adam hyper-params from mujoco

* updated MAST preset with IK_POSE_POS controller

* configurable initialization for policy stdev + custom extra noise per actor + logging of policy stdev to dashboard

* values loss weighting of 0.5

* minor fixes + presets

* bug-fix for MAST  where the old policy in the trainer had kept updating every training iter while it should only update after every policy publish

* bug-fix: reset_internal_state was not called by the trainer

* bug-fixes in the lstm flow + some hyper-param adjustments for CartPole_ClippedPPO_LSTM -> training and sometimes reaches 200

* adding back the horizon hyper-param - a messy commit

* another bug-fix missing from prev commit

* set control_freq=2 to match action_scale 0.125

* ClippedPPO with MAST cleanups and some preps for TD3 with MAST

* TD3 presets. RoboSuite_Lift_TD3 seems to work well with multi-process runs (-n 8)

* setting termination on collision to be on by default

* bug-fix following prev-prev commit

* initial cube exploration environment with TD3 commit

* bug fix + minor refactoring

* several parameter changes and RND debugging

* Robosuite Gym wrapper + Rename TD3_Random* -> Random*

* algorithm update

* Add RoboSuite v1 env + presets (to eventually replace non-v1 ones)

* Remove grasping presets, keep only V1 exp. presets (w/o V1 tag)

* Keep just robosuite V1 env as the 'robosuite_environment' module

* Exclude Robosuite and MAST presets from integration tests

* Exclude LSTM and MAST presets from golden tests

* Fix mistakenly removed import

* Revert debug changes in ReaderWriterLock

* Try another way to exclude LSTM/MAST golden tests

* Remove debug prints

* Remove PreDense heads, unused in the end

* Missed removing an instance of PreDense head

* Remove MAST, not required for this PR

* Undo unused concat option in ObservationStackingFilter

* Remove LSTM updates, not required in this PR

* Update README.md

* code changes for the exploration flow to work with robosuite master branch

* code cleanup + documentation

* jupyter tutorial for the goal-based exploration + scatter plot

* typo fix

* Update README.md

* seprate parameter for the obs-goal observation + small fixes

* code clarity fixes

* adjustment in tutorial 5

* Update tutorial

* Update tutorial

Co-authored-by: Guy Jacob <guy.jacob@intel.com>
Co-authored-by: Gal Leibovich <gal.leibovich@intel.com>
Co-authored-by: shadi.endrawis <sendrawi@aipg-ra-skx-03.ra.intel.com>
2021-06-01 00:34:19 +03:00

322 lines
13 KiB
Python

#
# Copyright (c) 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union ,Dict, Any
from enum import Enum, Flag, auto
from copy import deepcopy
import numpy as np
import random
from collections import namedtuple
try:
import robosuite
from robosuite.wrappers import Wrapper, DomainRandomizationWrapper
except ImportError:
from rl_coach.logger import failed_imports
failed_imports.append("Robosuite")
from rl_coach.base_parameters import Parameters, VisualizationParameters
from rl_coach.environments.environment import Environment, EnvironmentParameters, LevelSelection
from rl_coach.spaces import BoxActionSpace, VectorObservationSpace, StateSpace, PlanarMapsObservationSpace
# Importing our custom Robosuite environments here so that they are properly
# registered in Robosuite, and so recognized by 'robosuite.make()' and included
# in 'robosuite.ALL_ENVIRONMENTS'
import rl_coach.environments.robosuite.cube_exp
robosuite_environments = list(robosuite.ALL_ENVIRONMENTS)
robosuite_robots = list(robosuite.ALL_ROBOTS)
robosuite_controllers = list(robosuite.ALL_CONTROLLERS)
def get_robosuite_env_extra_parameters(env_name: str):
import inspect
assert env_name in robosuite_environments
env_params = inspect.signature(robosuite.environments.REGISTERED_ENVS[env_name]).parameters
base_params = list(RobosuiteBaseParameters().env_kwargs_dict().keys()) + ['robots', 'controller_configs']
return {n: p.default for n, p in env_params.items() if n not in base_params}
class OptionalObservations(Flag):
NONE = 0
CAMERA = auto()
OBJECT = auto()
class RobosuiteBaseParameters(Parameters):
def __init__(self, optional_observations: OptionalObservations = OptionalObservations.NONE):
super(RobosuiteBaseParameters, self).__init__()
# NOTE: Attribute names should exactly match the attribute names in Robosuite
self.horizon = 1000 # Every episode lasts for exactly horizon timesteps
self.ignore_done = True # True if never terminating the environment (ignore horizon)
self.reward_shaping = True # if True, use dense rewards.
# How many control signals to receive in every simulated second. This sets the amount of simulation time
# that passes between every action input (this is NOT the same as frame_skip)
self.control_freq = 10
# Optional observations (robot state is always returned)
# if True, every observation includes a rendered image
self.use_camera_obs = bool(optional_observations & OptionalObservations.CAMERA)
# if True, include object (cube/etc.) information in the observation
self.use_object_obs = bool(optional_observations & OptionalObservations.OBJECT)
# Camera parameters
self.has_renderer = False # Set to true to use Mujoco native viewer for on-screen rendering
self.render_camera = 'frontview' # name of camera to use for on-screen rendering
self.has_offscreen_renderer = self.use_camera_obs
self.render_collision_mesh = False # True if rendering collision meshes in camera. False otherwise
self.render_visual_mesh = True # True if rendering visual meshes in camera. False otherwise
self.camera_names = 'agentview' # name of camera for rendering camera observations
self.camera_heights = 84 # height of camera frame.
self.camera_widths = 84 # width of camera frame.
self.camera_depths = False # True if rendering RGB-D, and RGB otherwise.
# Collision
self.penalize_reward_on_collision = True
self.end_episode_on_collision = False
@property
def optional_observations(self):
flag = OptionalObservations.NONE
if self.use_camera_obs:
flag = OptionalObservations.CAMERA
if self.use_object_obs:
flag |= OptionalObservations.OBJECT
elif self.use_object_obs:
flag = OptionalObservations.OBJECT
return flag
@optional_observations.setter
def optional_observations(self, value):
self.use_camera_obs = bool(value & OptionalObservations.CAMERA)
if self.use_camera_obs:
self.has_offscreen_renderer = True
self.use_object_obs = bool(value & OptionalObservations.OBJECT)
def env_kwargs_dict(self):
res = {k: (v.value if isinstance(v, Enum) else v) for k, v in vars(self).items()}
return res
class RobosuiteEnvironmentParameters(EnvironmentParameters):
def __init__(self, level, robot=None, controller=None, apply_dr: bool = False,
dr_every_n_steps_min: int = 10, dr_every_n_steps_max: int = 20,
use_joint_vel_obs=False):
super().__init__(level=level)
self.base_parameters = RobosuiteBaseParameters()
self.extra_parameters = {}
self.robot = robot
self.controller = controller
self.apply_dr = apply_dr
self.dr_every_n_steps_min = dr_every_n_steps_min
self.dr_every_n_steps_max = dr_every_n_steps_max
self.use_joint_vel_obs = use_joint_vel_obs
self.custom_controller_config_fpath = None
@property
def path(self):
return 'rl_coach.environments.robosuite_environment:RobosuiteEnvironment'
DEFAULT_REWARD_SCALES = {
'Lift': 2.25,
'LiftLab': 2.25,
}
RobosuiteStepResult = namedtuple('RobosuiteStepResult', ['observation', 'reward', 'done', 'info'])
# Environment
class RobosuiteEnvironment(Environment):
def __init__(self, level: LevelSelection,
seed: int, frame_skip: int, human_control: bool, custom_reward_threshold: Union[int, float, None],
visualization_parameters: VisualizationParameters,
base_parameters: RobosuiteBaseParameters,
extra_parameters: Dict[str, Any],
robot: str, controller: str,
target_success_rate: float = 1.0, apply_dr: bool = False,
dr_every_n_steps_min: int = 10, dr_every_n_steps_max: int = 20, use_joint_vel_obs=False,
custom_controller_config_fpath=None, **kwargs):
super(RobosuiteEnvironment, self).__init__(level, seed, frame_skip, human_control, custom_reward_threshold,
visualization_parameters, target_success_rate)
# Validate arguments
self.frame_skip = max(1, self.frame_skip)
def validate_input(input, supported, name):
if input not in supported:
raise ValueError("Unknown Robosuite {0} passed: '{1}' ; Supported {0}s are: {2}".format(
name, input, ' | '.join(supported)
))
validate_input(self.env_id, robosuite_environments, 'environment')
validate_input(robot, robosuite_robots, 'robot')
self.robot = robot
if controller is not None:
validate_input(controller, robosuite_controllers, 'controller')
self.controller = controller
self.base_parameters = base_parameters
self.base_parameters.has_renderer = self.is_rendered and self.native_rendering
self.base_parameters.has_offscreen_renderer = self.base_parameters.use_camera_obs or (self.is_rendered and not
self.native_rendering)
# Seed
if self.seed is not None:
np.random.seed(self.seed)
random.seed(self.seed)
# Load and initialize environment
env_args = self.base_parameters.env_kwargs_dict()
env_args.update(extra_parameters)
if 'reward_scale' not in env_args and self.env_id in DEFAULT_REWARD_SCALES:
env_args['reward_scale'] = DEFAULT_REWARD_SCALES[self.env_id]
env_args['robots'] = self.robot
controller_cfg = None
if self.controller is not None:
controller_cfg = robosuite.controllers.load_controller_config(default_controller=self.controller)
elif custom_controller_config_fpath is not None:
controller_cfg = robosuite.controllers.load_controller_config(custom_fpath=custom_controller_config_fpath)
env_args['controller_configs'] = controller_cfg
self.env = robosuite.make(self.env_id, **env_args)
# TODO: Generalize this to filter any observation by name
if not use_joint_vel_obs:
self.env.modify_observable('robot0_joint_vel', 'active', False)
# Wrap with a dummy wrapper so we get a consistent API (there are subtle changes between
# wrappers and actual environments in Robosuite, for example action_spec as property vs. function)
self.env = Wrapper(self.env)
if apply_dr:
self.env = DomainRandomizationWrapper(self.env, seed=self.seed, randomize_every_n_steps_min=dr_every_n_steps_min,
randomize_every_n_steps_max=dr_every_n_steps_max)
# State space
self.state_space = self._setup_state_space()
# Action space
low, high = self.env.unwrapped.action_spec
self.action_space = BoxActionSpace(low.shape, low=low, high=high)
self.reset_internal_state()
if self.is_rendered:
image = self.get_rendered_image()
self.renderer.create_screen(image.shape[1], image.shape[0])
# TODO: Other environments call rendering here, why? reset_internal_state does it
def _setup_state_space(self):
state_space = StateSpace({})
dummy_obs = self._process_observation(self.env.observation_spec())
state_space['measurements'] = VectorObservationSpace(dummy_obs['measurements'].shape[0])
if self.base_parameters.use_camera_obs:
state_space['camera'] = PlanarMapsObservationSpace(dummy_obs['camera'].shape, 0, 255)
return state_space
def _process_observation(self, raw_obs):
new_obs = {}
# TODO: Support multiple cameras, this assumes a single camera
camera_name = self.base_parameters.camera_names
camera_obs = raw_obs.get(camera_name + '_image', None)
if camera_obs is not None:
depth_obs = raw_obs.get(camera_name + '_depth', None)
if depth_obs is not None:
depth_obs = np.expand_dims(depth_obs, axis=2)
camera_obs = np.concatenate([camera_obs, depth_obs], axis=2)
new_obs['camera'] = camera_obs
measurements = raw_obs['robot0_proprio-state']
object_obs = raw_obs.get('object-state', None)
if object_obs is not None:
measurements = np.concatenate([measurements, object_obs])
new_obs['measurements'] = measurements
return new_obs
def _take_action(self, action):
action = self.action_space.clip_action_to_space(action)
# We mimic the "action_repeat" mechanism of RobosuiteWrapper in Surreal.
# Same concept as frame_skip, only returning the average reward across repeated actions instead
# of the total reward.
rewards = []
for _ in range(self.frame_skip):
obs, reward, done, info = self.env.step(action)
rewards.append(reward)
if done:
break
reward = np.mean(rewards)
self.last_result = RobosuiteStepResult(obs, reward, done, info)
def _update_state(self):
obs = self._process_observation(self.last_result.observation)
self.state = {k: obs[k] for k in self.state_space.sub_spaces}
self.reward = self.last_result.reward or 0
self.done = self.last_result.done
self.info = self.last_result.info
def _restart_environment_episode(self, force_environment_reset=False):
reset_obs = self.env.reset()
self.last_result = RobosuiteStepResult(reset_obs, 0.0, False, {})
def _render(self):
self.env.render()
def get_rendered_image(self):
img: np.ndarray = self.env.sim.render(camera_name=self.base_parameters.render_camera,
height=512, width=512, depth=False)
return np.flip(img, 0)
def close(self):
self.env.close()
class RobosuiteGoalBasedExpEnvironmentParameters(RobosuiteEnvironmentParameters):
@property
def path(self):
return 'rl_coach.environments.robosuite_environment:RobosuiteGoalBasedExpEnvironment'
class RobosuiteGoalBasedExpEnvironment(RobosuiteEnvironment):
def _process_observation(self, raw_obs):
new_obs = super()._process_observation(raw_obs)
new_obs['obs-goal'] = None
return new_obs
def _setup_state_space(self):
state_space = super()._setup_state_space()
goal_based_shape = list(state_space['camera'].shape)
goal_based_shape[2] *= 2
state_space['obs-goal'] = PlanarMapsObservationSpace(tuple(goal_based_shape), 0, 255)
return state_space