mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
701 lines
34 KiB
Python
701 lines
34 KiB
Python
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import sys
|
|
sys.path.append('.')
|
|
|
|
import copy
|
|
from configparser import ConfigParser, Error
|
|
from rl_coach.core_types import EnvironmentSteps
|
|
import os
|
|
from rl_coach import logger
|
|
import traceback
|
|
from rl_coach.logger import screen, failed_imports
|
|
import argparse
|
|
import atexit
|
|
import time
|
|
import sys
|
|
import json
|
|
from rl_coach.base_parameters import Frameworks, VisualizationParameters, TaskParameters, DistributedTaskParameters, \
|
|
RunType
|
|
from multiprocessing import Process
|
|
from multiprocessing.managers import BaseManager
|
|
import subprocess
|
|
from rl_coach.graph_managers.graph_manager import HumanPlayScheduleParameters, GraphManager
|
|
from rl_coach.utils import list_all_presets, short_dynamic_import, get_open_port, SharedMemoryScratchPad, get_base_dir
|
|
from rl_coach.agents.human_agent import HumanAgentParameters
|
|
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
|
from rl_coach.environments.environment import SingleLevelSelection
|
|
from rl_coach.memories.backend.redis import RedisPubSubMemoryBackendParameters
|
|
from rl_coach.memories.backend.memory_impl import construct_memory_params
|
|
from rl_coach.data_stores.data_store import DataStoreParameters
|
|
from rl_coach.data_stores.s3_data_store import S3DataStoreParameters
|
|
from rl_coach.data_stores.nfs_data_store import NFSDataStoreParameters
|
|
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
|
|
from rl_coach.training_worker import training_worker
|
|
from rl_coach.rollout_worker import rollout_worker, wait_for_checkpoint
|
|
|
|
|
|
if len(set(failed_imports)) > 0:
|
|
screen.warning("Warning: failed to import the following packages - {}".format(', '.join(set(failed_imports))))
|
|
|
|
|
|
def add_items_to_dict(target_dict, source_dict):
|
|
updated_task_parameters = copy.copy(source_dict)
|
|
updated_task_parameters.update(target_dict)
|
|
return updated_task_parameters
|
|
|
|
|
|
def open_dashboard(experiment_path):
|
|
"""
|
|
open X11 based dashboard in a new process (nonblocking)
|
|
"""
|
|
dashboard_path = 'python {}/dashboard.py'.format(get_base_dir())
|
|
cmd = "{} --experiment_dir {}".format(dashboard_path, experiment_path)
|
|
screen.log_title("Opening dashboard - experiment path: {}".format(experiment_path))
|
|
# subprocess.Popen(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True, executable="/bin/bash")
|
|
subprocess.Popen(cmd, shell=True, executable="/bin/bash")
|
|
|
|
|
|
def start_graph(graph_manager: 'GraphManager', task_parameters: 'TaskParameters'):
|
|
"""
|
|
Runs the graph_manager using the configured task_parameters.
|
|
This stand-alone method is a convenience for multiprocessing.
|
|
"""
|
|
graph_manager.create_graph(task_parameters)
|
|
|
|
# let the adventure begin
|
|
if task_parameters.evaluate_only:
|
|
graph_manager.evaluate(EnvironmentSteps(sys.maxsize))
|
|
else:
|
|
graph_manager.improve()
|
|
graph_manager.close()
|
|
|
|
|
|
def handle_distributed_coach_tasks(graph_manager, args, task_parameters):
|
|
ckpt_inside_container = "/checkpoint"
|
|
|
|
memory_backend_params = None
|
|
if args.memory_backend_params:
|
|
memory_backend_params = json.loads(args.memory_backend_params)
|
|
memory_backend_params['run_type'] = str(args.distributed_coach_run_type)
|
|
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(memory_backend_params))
|
|
|
|
data_store_params = None
|
|
if args.data_store_params:
|
|
data_store_params = construct_data_store_params(json.loads(args.data_store_params))
|
|
data_store_params.expt_dir = args.experiment_path
|
|
data_store_params.checkpoint_dir = ckpt_inside_container
|
|
graph_manager.data_store_params = data_store_params
|
|
|
|
if args.distributed_coach_run_type == RunType.TRAINER:
|
|
task_parameters.checkpoint_save_dir = ckpt_inside_container
|
|
training_worker(
|
|
graph_manager=graph_manager,
|
|
task_parameters=task_parameters
|
|
)
|
|
|
|
if args.distributed_coach_run_type == RunType.ROLLOUT_WORKER:
|
|
task_parameters.checkpoint_restore_dir = ckpt_inside_container
|
|
|
|
data_store = None
|
|
if args.data_store_params:
|
|
data_store = get_data_store(data_store_params)
|
|
|
|
rollout_worker(
|
|
graph_manager=graph_manager,
|
|
data_store=data_store,
|
|
num_workers=args.num_workers,
|
|
task_parameters=task_parameters
|
|
)
|
|
|
|
|
|
def handle_distributed_coach_orchestrator(args):
|
|
from rl_coach.orchestrators.kubernetes_orchestrator import KubernetesParameters, Kubernetes, \
|
|
RunTypeParameters
|
|
|
|
ckpt_inside_container = "/checkpoint"
|
|
arg_list = sys.argv[1:]
|
|
try:
|
|
i = arg_list.index('--distributed_coach_run_type')
|
|
arg_list.pop(i)
|
|
arg_list.pop(i)
|
|
except ValueError:
|
|
pass
|
|
|
|
trainer_command = ['python3', 'rl_coach/coach.py', '--distributed_coach_run_type', str(RunType.TRAINER)] + arg_list
|
|
rollout_command = ['python3', 'rl_coach/coach.py', '--distributed_coach_run_type', str(RunType.ROLLOUT_WORKER)] + arg_list
|
|
|
|
if '--experiment_name' not in rollout_command:
|
|
rollout_command = rollout_command + ['--experiment_name', args.experiment_name]
|
|
|
|
if '--experiment_name' not in trainer_command:
|
|
trainer_command = trainer_command + ['--experiment_name', args.experiment_name]
|
|
|
|
memory_backend_params = None
|
|
if args.memory_backend == "redispubsub":
|
|
memory_backend_params = RedisPubSubMemoryBackendParameters()
|
|
|
|
ds_params_instance = None
|
|
if args.data_store == "s3":
|
|
ds_params = DataStoreParameters("s3", "", "")
|
|
ds_params_instance = S3DataStoreParameters(ds_params=ds_params, end_point=args.s3_end_point, bucket_name=args.s3_bucket_name,
|
|
creds_file=args.s3_creds_file, checkpoint_dir=ckpt_inside_container, expt_dir=args.experiment_path)
|
|
elif args.data_store == "nfs":
|
|
ds_params = DataStoreParameters("nfs", "kubernetes", "")
|
|
ds_params_instance = NFSDataStoreParameters(ds_params)
|
|
|
|
worker_run_type_params = RunTypeParameters(args.image, rollout_command, run_type=str(RunType.ROLLOUT_WORKER), num_replicas=args.num_workers)
|
|
trainer_run_type_params = RunTypeParameters(args.image, trainer_command, run_type=str(RunType.TRAINER))
|
|
|
|
orchestration_params = KubernetesParameters([worker_run_type_params, trainer_run_type_params],
|
|
kubeconfig='~/.kube/config',
|
|
memory_backend_parameters=memory_backend_params,
|
|
data_store_params=ds_params_instance)
|
|
orchestrator = Kubernetes(orchestration_params)
|
|
if not orchestrator.setup():
|
|
print("Could not setup.")
|
|
return
|
|
|
|
if orchestrator.deploy_trainer():
|
|
print("Successfully deployed trainer.")
|
|
else:
|
|
print("Could not deploy trainer.")
|
|
return
|
|
|
|
if orchestrator.deploy_worker():
|
|
print("Successfully deployed rollout worker(s).")
|
|
else:
|
|
print("Could not deploy rollout worker(s).")
|
|
return
|
|
|
|
if args.dump_worker_logs:
|
|
screen.log_title("Dumping rollout worker logs in: {}".format(args.experiment_path))
|
|
orchestrator.worker_logs(path=args.experiment_path)
|
|
|
|
try:
|
|
orchestrator.trainer_logs()
|
|
except KeyboardInterrupt:
|
|
pass
|
|
|
|
orchestrator.undeploy()
|
|
|
|
|
|
class CoachLauncher(object):
|
|
"""
|
|
This class is responsible for gathering all user-specified configuration options, parsing them,
|
|
instantiating a GraphManager and then starting that GraphManager with either improve() or evaluate().
|
|
This class is also responsible for launching multiple processes.
|
|
It is structured so that it can be sub-classed to provide alternate mechanisms to configure and launch
|
|
Coach jobs.
|
|
|
|
The key entry-point for this class is the .launch() method which is expected to be called from __main__
|
|
and handle absolutely everything for a job.
|
|
"""
|
|
|
|
def launch(self):
|
|
"""
|
|
Main entry point for the class, and the standard way to run coach from the command line.
|
|
Parses command-line arguments through argparse, instantiates a GraphManager and then runs it.
|
|
"""
|
|
parser = self.get_argument_parser()
|
|
args = self.get_config_args(parser)
|
|
graph_manager = self.get_graph_manager_from_args(args)
|
|
self.run_graph_manager(graph_manager, args)
|
|
|
|
def get_graph_manager_from_args(self, args: argparse.Namespace) -> 'GraphManager':
|
|
"""
|
|
Return the graph manager according to the command line arguments given by the user.
|
|
:param args: the arguments given by the user
|
|
:return: the graph manager, not bound to task_parameters yet.
|
|
"""
|
|
graph_manager = None
|
|
|
|
# if a preset was given we will load the graph manager for the preset
|
|
if args.preset is not None:
|
|
graph_manager = short_dynamic_import(args.preset, ignore_module_case=True)
|
|
|
|
# for human play we need to create a custom graph manager
|
|
if args.play:
|
|
env_params = short_dynamic_import(args.environment_type, ignore_module_case=True)()
|
|
env_params.human_control = True
|
|
schedule_params = HumanPlayScheduleParameters()
|
|
graph_manager = BasicRLGraphManager(HumanAgentParameters(), env_params, schedule_params, VisualizationParameters())
|
|
|
|
# Set framework
|
|
# Note: Some graph managers (e.g. HAC preset) create multiple agents and the attribute is called agents_params
|
|
if hasattr(graph_manager, 'agent_params'):
|
|
for network_parameters in graph_manager.agent_params.network_wrappers.values():
|
|
network_parameters.framework = args.framework
|
|
elif hasattr(graph_manager, 'agents_params'):
|
|
for ap in graph_manager.agents_params:
|
|
for network_parameters in ap.network_wrappers.values():
|
|
network_parameters.framework = args.framework
|
|
|
|
if args.level:
|
|
if isinstance(graph_manager.env_params.level, SingleLevelSelection):
|
|
graph_manager.env_params.level.select(args.level)
|
|
else:
|
|
graph_manager.env_params.level = args.level
|
|
|
|
# set the seed for the environment
|
|
if args.seed is not None:
|
|
graph_manager.env_params.seed = args.seed
|
|
|
|
# visualization
|
|
graph_manager.visualization_parameters.dump_gifs = graph_manager.visualization_parameters.dump_gifs or args.dump_gifs
|
|
graph_manager.visualization_parameters.dump_mp4 = graph_manager.visualization_parameters.dump_mp4 or args.dump_mp4
|
|
graph_manager.visualization_parameters.render = args.render
|
|
graph_manager.visualization_parameters.tensorboard = args.tensorboard
|
|
graph_manager.visualization_parameters.print_networks_summary = args.print_networks_summary
|
|
|
|
# update the custom parameters
|
|
if args.custom_parameter is not None:
|
|
unstripped_key_value_pairs = [pair.split('=') for pair in args.custom_parameter.split(';')]
|
|
stripped_key_value_pairs = [tuple([pair[0].strip(), pair[1].strip()]) for pair in
|
|
unstripped_key_value_pairs if len(pair) == 2]
|
|
|
|
# load custom parameters into run_dict
|
|
for key, value in stripped_key_value_pairs:
|
|
exec("graph_manager.{}={}".format(key, value))
|
|
|
|
return graph_manager
|
|
|
|
def display_all_presets_and_exit(self):
|
|
# list available presets
|
|
screen.log_title("Available Presets:")
|
|
for preset in sorted(list_all_presets()):
|
|
print(preset)
|
|
sys.exit(0)
|
|
|
|
def expand_preset(self, preset):
|
|
"""
|
|
Replace a short preset name with the full python path, and verify that it can be imported.
|
|
"""
|
|
if preset.lower() in [p.lower() for p in list_all_presets()]:
|
|
preset = "{}.py:graph_manager".format(os.path.join(get_base_dir(), 'presets', preset))
|
|
else:
|
|
preset = "{}".format(preset)
|
|
# if a graph manager variable was not specified, try the default of :graph_manager
|
|
if len(preset.split(":")) == 1:
|
|
preset += ":graph_manager"
|
|
|
|
# verify that the preset exists
|
|
preset_path = preset.split(":")[0]
|
|
if not os.path.exists(preset_path):
|
|
screen.error("The given preset ({}) cannot be found.".format(preset))
|
|
|
|
# verify that the preset can be instantiated
|
|
try:
|
|
short_dynamic_import(preset, ignore_module_case=True)
|
|
except TypeError as e:
|
|
traceback.print_exc()
|
|
screen.error('Internal Error: ' + str(e) + "\n\nThe given preset ({}) cannot be instantiated."
|
|
.format(preset))
|
|
|
|
return preset
|
|
|
|
def get_config_args(self, parser: argparse.ArgumentParser) -> argparse.Namespace:
|
|
"""
|
|
Returns a Namespace object with all the user-specified configuration options needed to launch.
|
|
This implementation uses argparse to take arguments from the CLI, but this can be over-ridden by
|
|
another method that gets its configuration from elsewhere. An equivalent method however must
|
|
return an identically structured Namespace object, which conforms to the structure defined by
|
|
get_argument_parser.
|
|
|
|
This method parses the arguments that the user entered, does some basic validation, and
|
|
modification of user-specified values in short form to be more explicit.
|
|
|
|
:param parser: a parser object which implicitly defines the format of the Namespace that
|
|
is expected to be returned.
|
|
:return: the parsed arguments as a Namespace
|
|
"""
|
|
args = parser.parse_args()
|
|
|
|
if args.nocolor:
|
|
screen.set_use_colors(False)
|
|
|
|
# if no arg is given
|
|
if len(sys.argv) == 1:
|
|
parser.print_help()
|
|
sys.exit(0)
|
|
|
|
# list available presets
|
|
if args.list:
|
|
self.display_all_presets_and_exit()
|
|
|
|
if args.distributed_coach and not args.checkpoint_save_secs:
|
|
screen.error("Distributed coach requires --checkpoint_save_secs or -s")
|
|
|
|
# Read args from config file for distributed Coach.
|
|
if args.distributed_coach and args.distributed_coach_run_type == RunType.ORCHESTRATOR:
|
|
coach_config = ConfigParser({
|
|
'image': '',
|
|
'memory_backend': 'redispubsub',
|
|
'data_store': 's3',
|
|
's3_end_point': 's3.amazonaws.com',
|
|
's3_bucket_name': '',
|
|
's3_creds_file': ''
|
|
})
|
|
try:
|
|
coach_config.read(args.distributed_coach_config_path)
|
|
args.image = coach_config.get('coach', 'image')
|
|
args.memory_backend = coach_config.get('coach', 'memory_backend')
|
|
args.data_store = coach_config.get('coach', 'data_store')
|
|
if args.data_store == 's3':
|
|
args.s3_end_point = coach_config.get('coach', 's3_end_point')
|
|
args.s3_bucket_name = coach_config.get('coach', 's3_bucket_name')
|
|
args.s3_creds_file = coach_config.get('coach', 's3_creds_file')
|
|
except Error as e:
|
|
screen.error("Error when reading distributed Coach config file: {}".format(e))
|
|
|
|
if args.image == '':
|
|
screen.error("Image cannot be empty.")
|
|
|
|
data_store_choices = ['s3', 'nfs']
|
|
if args.data_store not in data_store_choices:
|
|
screen.warning("{} data store is unsupported.".format(args.data_store))
|
|
screen.error("Supported data stores are {}.".format(data_store_choices))
|
|
|
|
memory_backend_choices = ['redispubsub']
|
|
if args.memory_backend not in memory_backend_choices:
|
|
screen.warning("{} memory backend is not supported.".format(args.memory_backend))
|
|
screen.error("Supported memory backends are {}.".format(memory_backend_choices))
|
|
|
|
if args.data_store == 's3':
|
|
if args.s3_bucket_name == '':
|
|
screen.error("S3 bucket name cannot be empty.")
|
|
if args.s3_creds_file == '':
|
|
args.s3_creds_file = None
|
|
|
|
if args.play and args.distributed_coach:
|
|
screen.error("Playing is not supported in distributed Coach.")
|
|
|
|
# replace a short preset name with the full path
|
|
if args.preset is not None:
|
|
args.preset = self.expand_preset(args.preset)
|
|
|
|
# validate the checkpoints args
|
|
if args.checkpoint_restore_dir is not None and not os.path.exists(args.checkpoint_restore_dir):
|
|
screen.error("The requested checkpoint folder to load from does not exist.")
|
|
|
|
# no preset was given. check if the user requested to play some environment on its own
|
|
if args.preset is None and args.play and not args.environment_type:
|
|
screen.error('When no preset is given for Coach to run, and the user requests human control over '
|
|
'the environment, the user is expected to input the desired environment_type and level.'
|
|
'\nAt least one of these parameters was not given.')
|
|
elif args.preset and args.play:
|
|
screen.error("Both the --preset and the --play flags were set. These flags can not be used together. "
|
|
"For human control, please use the --play flag together with the environment type flag (-et)")
|
|
elif args.preset is None and not args.play:
|
|
screen.error("Please choose a preset using the -p flag or use the --play flag together with choosing an "
|
|
"environment type (-et) in order to play the game.")
|
|
|
|
# get experiment name and path
|
|
args.experiment_name = logger.get_experiment_name(args.experiment_name)
|
|
args.experiment_path = logger.get_experiment_path(args.experiment_name)
|
|
|
|
if args.play and args.num_workers > 1:
|
|
screen.warning("Playing the game as a human is only available with a single worker. "
|
|
"The number of workers will be reduced to 1")
|
|
args.num_workers = 1
|
|
|
|
args.framework = Frameworks[args.framework.lower()]
|
|
|
|
# checkpoints
|
|
args.checkpoint_save_dir = os.path.join(args.experiment_path, 'checkpoint') if args.checkpoint_save_secs is not None else None
|
|
|
|
if args.export_onnx_graph and not args.checkpoint_save_secs:
|
|
screen.warning("Exporting ONNX graphs requires setting the --checkpoint_save_secs flag. "
|
|
"The --export_onnx_graph will have no effect.")
|
|
|
|
return args
|
|
|
|
def get_argument_parser(self) -> argparse.ArgumentParser:
|
|
"""
|
|
This returns an ArgumentParser object which defines the set of options that customers are expected to supply in order
|
|
to launch a coach job.
|
|
"""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-p', '--preset',
|
|
help="(string) Name of a preset to run (class name from the 'presets' directory.)",
|
|
default=None,
|
|
type=str)
|
|
parser.add_argument('-l', '--list',
|
|
help="(flag) List all available presets",
|
|
action='store_true')
|
|
parser.add_argument('-e', '--experiment_name',
|
|
help="(string) Experiment name to be used to store the results.",
|
|
default='',
|
|
type=str)
|
|
parser.add_argument('-r', '--render',
|
|
help="(flag) Render environment",
|
|
action='store_true')
|
|
parser.add_argument('-f', '--framework',
|
|
help="(string) Neural network framework. Available values: tensorflow, mxnet",
|
|
default='tensorflow',
|
|
type=str)
|
|
parser.add_argument('-n', '--num_workers',
|
|
help="(int) Number of workers for multi-process based agents, e.g. A3C",
|
|
default=1,
|
|
type=int)
|
|
parser.add_argument('-c', '--use_cpu',
|
|
help="(flag) Use only the cpu for training. If a GPU is not available, this flag will have no "
|
|
"effect and the CPU will be used either way.",
|
|
action='store_true')
|
|
parser.add_argument('-ew', '--evaluation_worker',
|
|
help="(int) If multiple workers are used, add an evaluation worker as well which will "
|
|
"evaluate asynchronously and independently during the training. NOTE: this worker will "
|
|
"ignore the evaluation settings in the preset's ScheduleParams.",
|
|
action='store_true')
|
|
parser.add_argument('--play',
|
|
help="(flag) Play as a human by controlling the game with the keyboard. "
|
|
"This option will save a replay buffer with the game play.",
|
|
action='store_true')
|
|
parser.add_argument('--evaluate',
|
|
help="(flag) Run evaluation only. This is a convenient way to disable "
|
|
"training in order to evaluate an existing checkpoint.",
|
|
action='store_true')
|
|
parser.add_argument('-v', '--verbosity',
|
|
help="(flag) Sets the verbosity level of Coach print outs. Can be either low or high.",
|
|
default="low",
|
|
type=str)
|
|
parser.add_argument('-tfv', '--tf_verbosity',
|
|
help="(flag) TensorFlow verbosity level",
|
|
default=3,
|
|
type=int)
|
|
parser.add_argument('--nocolor',
|
|
help="(flag) Turn off color-codes in screen logging. Ascii text only",
|
|
action='store_true')
|
|
parser.add_argument('-s', '--checkpoint_save_secs',
|
|
help="(int) Time in seconds between saving checkpoints of the model.",
|
|
default=None,
|
|
type=int)
|
|
parser.add_argument('-crd', '--checkpoint_restore_dir',
|
|
help='(string) Path to a folder containing a checkpoint to restore the model from.',
|
|
type=str)
|
|
parser.add_argument('-dg', '--dump_gifs',
|
|
help="(flag) Enable the gif saving functionality.",
|
|
action='store_true')
|
|
parser.add_argument('-dm', '--dump_mp4',
|
|
help="(flag) Enable the mp4 saving functionality.",
|
|
action='store_true')
|
|
parser.add_argument('-et', '--environment_type',
|
|
help="(string) Choose an environment type class to override on top of the selected preset.",
|
|
default=None,
|
|
type=str)
|
|
parser.add_argument('-ept', '--exploration_policy_type',
|
|
help="(string) Choose an exploration policy type class to override on top of the selected "
|
|
"preset."
|
|
"If no preset is defined, a preset can be set from the command-line by combining settings "
|
|
"which are set by using --agent_type, --experiment_type, --environemnt_type"
|
|
,
|
|
default=None,
|
|
type=str)
|
|
parser.add_argument('-lvl', '--level',
|
|
help="(string) Choose the level that will be played in the environment that was selected."
|
|
"This value will override the level parameter in the environment class."
|
|
,
|
|
default=None,
|
|
type=str)
|
|
parser.add_argument('-cp', '--custom_parameter',
|
|
help="(string) Semicolon separated parameters used to override specific parameters on top of"
|
|
" the selected preset (or on top of the command-line assembled one). "
|
|
"Whenever a parameter value is a string, it should be inputted as '\\\"string\\\"'. "
|
|
"For ex.: "
|
|
"\"visualization.render=False; num_training_iterations=500; optimizer='rmsprop'\"",
|
|
default=None,
|
|
type=str)
|
|
parser.add_argument('--print_networks_summary',
|
|
help="(flag) Print network summary to stdout",
|
|
action='store_true')
|
|
parser.add_argument('-tb', '--tensorboard',
|
|
help="(flag) When using the TensorFlow backend, enable TensorBoard log dumps. ",
|
|
action='store_true')
|
|
parser.add_argument('-ns', '--no_summary',
|
|
help="(flag) Prevent Coach from printing a summary and asking questions at the end of runs",
|
|
action='store_true')
|
|
parser.add_argument('-d', '--open_dashboard',
|
|
help="(flag) Open dashboard with the experiment when the run starts",
|
|
action='store_true')
|
|
parser.add_argument('--seed',
|
|
help="(int) A seed to use for running the experiment",
|
|
default=None,
|
|
type=int)
|
|
parser.add_argument('-onnx', '--export_onnx_graph',
|
|
help="(flag) Export the ONNX graph to the experiment directory. "
|
|
"This will have effect only if the --checkpoint_save_secs flag is used in order to store "
|
|
"checkpoints, since the weights checkpoint are needed for the ONNX graph. "
|
|
"Keep in mind that this can cause major overhead on the experiment. "
|
|
"Exporting ONNX graphs requires manually installing the tf2onnx package "
|
|
"(https://github.com/onnx/tensorflow-onnx).",
|
|
action='store_true')
|
|
parser.add_argument('-dc', '--distributed_coach',
|
|
help="(flag) Use distributed Coach.",
|
|
action='store_true')
|
|
parser.add_argument('-dcp', '--distributed_coach_config_path',
|
|
help="(string) Path to config file when using distributed rollout workers."
|
|
"Only distributed Coach parameters should be provided through this config file."
|
|
"Rest of the parameters are provided using Coach command line options."
|
|
"Used only with --distributed_coach flag."
|
|
"Ignored if --distributed_coach flag is not used.",
|
|
type=str)
|
|
parser.add_argument('--memory_backend_params',
|
|
help=argparse.SUPPRESS,
|
|
type=str)
|
|
parser.add_argument('--data_store_params',
|
|
help=argparse.SUPPRESS,
|
|
type=str)
|
|
parser.add_argument('--distributed_coach_run_type',
|
|
help=argparse.SUPPRESS,
|
|
type=RunType,
|
|
default=RunType.ORCHESTRATOR,
|
|
choices=list(RunType))
|
|
parser.add_argument('-asc', '--apply_stop_condition',
|
|
help="(flag) If set, this will apply a stop condition on the run, defined by reaching a"
|
|
"target success rate as set by the environment or a custom success rate as defined "
|
|
"in the preset. ",
|
|
action='store_true')
|
|
parser.add_argument('--dump_worker_logs',
|
|
help="(flag) Only used in distributed coach. If set, the worker logs are saved in the experiment dir",
|
|
action='store_true')
|
|
|
|
return parser
|
|
|
|
def run_graph_manager(self, graph_manager: 'GraphManager', args: argparse.Namespace):
|
|
if args.distributed_coach and not graph_manager.agent_params.algorithm.distributed_coach_synchronization_type:
|
|
screen.error("{} algorithm is not supported using distributed Coach.".format(graph_manager.agent_params.algorithm))
|
|
|
|
# Intel optimized TF seems to run significantly faster when limiting to a single OMP thread.
|
|
# This will not affect GPU runs.
|
|
os.environ["OMP_NUM_THREADS"] = "1"
|
|
|
|
# turn TF debug prints off
|
|
if args.framework == Frameworks.tensorflow:
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = str(args.tf_verbosity)
|
|
|
|
# turn off the summary at the end of the run if necessary
|
|
if not args.no_summary and not args.distributed_coach:
|
|
atexit.register(logger.summarize_experiment)
|
|
screen.change_terminal_title(args.experiment_name)
|
|
|
|
task_parameters = TaskParameters(
|
|
framework_type=args.framework,
|
|
evaluate_only=args.evaluate,
|
|
experiment_path=args.experiment_path,
|
|
seed=args.seed,
|
|
use_cpu=args.use_cpu,
|
|
checkpoint_save_secs=args.checkpoint_save_secs,
|
|
checkpoint_restore_dir=args.checkpoint_restore_dir,
|
|
checkpoint_save_dir=args.checkpoint_save_dir,
|
|
export_onnx_graph=args.export_onnx_graph,
|
|
apply_stop_condition=args.apply_stop_condition
|
|
)
|
|
|
|
# open dashboard
|
|
if args.open_dashboard:
|
|
open_dashboard(args.experiment_path)
|
|
|
|
if args.distributed_coach and args.distributed_coach_run_type != RunType.ORCHESTRATOR:
|
|
handle_distributed_coach_tasks(graph_manager, args, task_parameters)
|
|
return
|
|
|
|
if args.distributed_coach and args.distributed_coach_run_type == RunType.ORCHESTRATOR:
|
|
handle_distributed_coach_orchestrator(args)
|
|
return
|
|
|
|
# Single-threaded runs
|
|
if args.num_workers == 1:
|
|
self.start_single_threaded(task_parameters, graph_manager, args)
|
|
else:
|
|
self.start_multi_threaded(graph_manager, args)
|
|
|
|
def start_single_threaded(self, task_parameters, graph_manager: 'GraphManager', args: argparse.Namespace):
|
|
# Start the training or evaluation
|
|
start_graph(graph_manager=graph_manager, task_parameters=task_parameters)
|
|
|
|
def start_multi_threaded(self, graph_manager: 'GraphManager', args: argparse.Namespace):
|
|
total_tasks = args.num_workers
|
|
if args.evaluation_worker:
|
|
total_tasks += 1
|
|
|
|
ps_hosts = "localhost:{}".format(get_open_port())
|
|
worker_hosts = ",".join(["localhost:{}".format(get_open_port()) for i in range(total_tasks)])
|
|
|
|
# Shared memory
|
|
class CommManager(BaseManager):
|
|
pass
|
|
CommManager.register('SharedMemoryScratchPad', SharedMemoryScratchPad, exposed=['add', 'get', 'internal_call'])
|
|
comm_manager = CommManager()
|
|
comm_manager.start()
|
|
shared_memory_scratchpad = comm_manager.SharedMemoryScratchPad()
|
|
|
|
def start_distributed_task(job_type, task_index, evaluation_worker=False,
|
|
shared_memory_scratchpad=shared_memory_scratchpad):
|
|
task_parameters = DistributedTaskParameters(
|
|
framework_type=args.framework,
|
|
parameters_server_hosts=ps_hosts,
|
|
worker_hosts=worker_hosts,
|
|
job_type=job_type,
|
|
task_index=task_index,
|
|
evaluate_only=evaluation_worker,
|
|
use_cpu=args.use_cpu,
|
|
num_tasks=total_tasks, # training tasks + 1 evaluation task
|
|
num_training_tasks=args.num_workers,
|
|
experiment_path=args.experiment_path,
|
|
shared_memory_scratchpad=shared_memory_scratchpad,
|
|
seed=args.seed+task_index if args.seed is not None else None, # each worker gets a different seed
|
|
checkpoint_save_secs=args.checkpoint_save_secs,
|
|
checkpoint_restore_dir=args.checkpoint_restore_dir,
|
|
checkpoint_save_dir=args.checkpoint_save_dir,
|
|
export_onnx_graph=args.export_onnx_graph,
|
|
apply_stop_condition=args.apply_stop_condition
|
|
)
|
|
# we assume that only the evaluation workers are rendering
|
|
graph_manager.visualization_parameters.render = args.render and evaluation_worker
|
|
p = Process(target=start_graph, args=(graph_manager, task_parameters))
|
|
# p.daemon = True
|
|
p.start()
|
|
return p
|
|
|
|
# parameter server
|
|
parameter_server = start_distributed_task("ps", 0)
|
|
|
|
# training workers
|
|
# wait a bit before spawning the non chief workers in order to make sure the session is already created
|
|
workers = []
|
|
workers.append(start_distributed_task("worker", 0))
|
|
time.sleep(2)
|
|
for task_index in range(1, args.num_workers):
|
|
workers.append(start_distributed_task("worker", task_index))
|
|
|
|
# evaluation worker
|
|
if args.evaluation_worker or args.render:
|
|
evaluation_worker = start_distributed_task("worker", args.num_workers, evaluation_worker=True)
|
|
|
|
# wait for all workers
|
|
[w.join() for w in workers]
|
|
if args.evaluation_worker:
|
|
evaluation_worker.terminate()
|
|
|
|
|
|
def main():
|
|
launcher = CoachLauncher()
|
|
launcher.launch()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|