1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/docs/algorithms/value_optimization/nec/index.html
2018-08-13 17:11:34 +03:00

305 lines
11 KiB
HTML

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="shortcut icon" href="../../../img/favicon.ico">
<title>Neural Episodic Control - Reinforcement Learning Coach</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="../../../css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="../../../css/highlight.css">
<link href="../../../extra.css" rel="stylesheet">
<script>
// Current page data
var mkdocs_page_name = "Neural Episodic Control";
var mkdocs_page_input_path = "algorithms/value_optimization/nec.md";
var mkdocs_page_url = "/algorithms/value_optimization/nec/";
</script>
<script src="../../../js/jquery-2.1.1.min.js"></script>
<script src="../../../js/modernizr-2.8.3.min.js"></script>
<script type="text/javascript" src="../../../js/highlight.pack.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-nav-search">
<a href="../../.." class="icon icon-home"> Reinforcement Learning Coach</a>
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1">
<a class="" href="../../..">Home</a>
</li>
<li class="toctree-l1">
<a class="" href="../../../usage/">Usage</a>
</li>
<li class="toctree-l1">
<span class="caption-text">Design</span>
<ul class="subnav">
<li class="">
<a class="" href="../../../design/features/">Features</a>
</li>
<li class="">
<a class="" href="../../../design/control_flow/">Control Flow</a>
</li>
<li class="">
<a class="" href="../../../design/network/">Network</a>
</li>
<li class="">
<a class="" href="../../../design/filters/">Filters</a>
</li>
</ul>
</li>
<li class="toctree-l1">
<span class="caption-text">Algorithms</span>
<ul class="subnav">
<li class="">
<a class="" href="../dqn/">DQN</a>
</li>
<li class="">
<a class="" href="../double_dqn/">Double DQN</a>
</li>
<li class="">
<a class="" href="../dueling_dqn/">Dueling DQN</a>
</li>
<li class="">
<a class="" href="../categorical_dqn/">Categorical DQN</a>
</li>
<li class="">
<a class="" href="../mmc/">Mixed Monte Carlo</a>
</li>
<li class="">
<a class="" href="../pal/">Persistent Advantage Learning</a>
</li>
<li class=" current">
<a class="current" href="./">Neural Episodic Control</a>
<ul class="subnav">
<li class="toctree-l3"><a href="#neural-episodic-control">Neural Episodic Control</a></li>
<ul>
<li><a class="toctree-l4" href="#network-structure">Network Structure</a></li>
<li><a class="toctree-l4" href="#algorithm-description">Algorithm Description</a></li>
</ul>
</ul>
</li>
<li class="">
<a class="" href="../bs_dqn/">Bootstrapped DQN</a>
</li>
<li class="">
<a class="" href="../n_step/">N-Step Q Learning</a>
</li>
<li class="">
<a class="" href="../naf/">Normalized Advantage Functions</a>
</li>
<li class="">
<a class="" href="../../policy_optimization/pg/">Policy Gradient</a>
</li>
<li class="">
<a class="" href="../../policy_optimization/ac/">Actor-Critic</a>
</li>
<li class="">
<a class="" href="../../policy_optimization/ddpg/">Deep Determinstic Policy Gradients</a>
</li>
<li class="">
<a class="" href="../../policy_optimization/ppo/">Proximal Policy Optimization</a>
</li>
<li class="">
<a class="" href="../../policy_optimization/cppo/">Clipped Proximal Policy Optimization</a>
</li>
<li class="">
<a class="" href="../../other/dfp/">Direct Future Prediction</a>
</li>
<li class="">
<a class="" href="../../imitation/bc/">Behavioral Cloning</a>
</li>
</ul>
</li>
<li class="toctree-l1">
<a class="" href="../../../dashboard/">Coach Dashboard</a>
</li>
<li class="toctree-l1">
<span class="caption-text">Contributing</span>
<ul class="subnav">
<li class="">
<a class="" href="../../../contributing/add_agent/">Adding a New Agent</a>
</li>
<li class="">
<a class="" href="../../../contributing/add_env/">Adding a New Environment</a>
</li>
</ul>
</li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../..">Reinforcement Learning Coach</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../..">Docs</a> &raquo;</li>
<li>Algorithms &raquo;</li>
<li>Neural Episodic Control</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<h1 id="neural-episodic-control">Neural Episodic Control</h1>
<p><strong>Actions space:</strong> Discrete</p>
<p><strong>References:</strong> <a href="https://arxiv.org/abs/1703.01988">Neural Episodic Control</a></p>
<h2 id="network-structure">Network Structure</h2>
<p style="text-align: center;">
<img src="..\..\design_imgs\nec.png" width=500>
</p>
<h2 id="algorithm-description">Algorithm Description</h2>
<h3 id="choosing-an-action">Choosing an action</h3>
<ol>
<li>Use the current state as an input to the online network and extract the state embedding, which is the intermediate output from the middleware. </li>
<li>For each possible action <script type="math/tex">a_i</script>, run the DND head using the state embedding and the selected action <script type="math/tex">a_i</script> as inputs. The DND is queried and returns the <script type="math/tex"> P </script> nearest neighbor keys and values. The keys and values are used to calculate and return the action <script type="math/tex"> Q </script> value from the network. </li>
<li>Pass all the <script type="math/tex"> Q </script> values to the exploration policy and choose an action accordingly. </li>
<li>Store the state embeddings and actions taken during the current episode in a small buffer <script type="math/tex">B</script>, in order to accumulate transitions until it is possible to calculate the total discounted returns over the entire episode.</li>
</ol>
<h3 id="finalizing-an-episode">Finalizing an episode</h3>
<p>For each step in the episode, the state embeddings and the taken actions are stored in the buffer <script type="math/tex">B</script>. When the episode is finished, the replay buffer calculates the <script type="math/tex"> N </script>-step total return of each transition in the buffer, bootstrapped using the maximum <script type="math/tex">Q</script> value of the <script type="math/tex">N</script>-th transition. Those values are inserted along with the total return into the DND, and the buffer <script type="math/tex">B</script> is reset.</p>
<h3 id="training-the-network">Training the network</h3>
<p>Train the network only when the DND has enough entries for querying.</p>
<p>To train the network, the current states are used as the inputs and the <script type="math/tex">N</script>-step returns are used as the targets. The <script type="math/tex">N</script>-step return used takes into account <script type="math/tex"> N </script> consecutive steps, and bootstraps the last value from the network if necessary:
<script type="math/tex; mode=display"> y_t=\sum_{j=0}^{N-1}\gamma^j r(s_{t+j},a_{t+j} ) +\gamma^N max_a Q(s_{t+N},a) </script>
</p>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../bs_dqn/" class="btn btn-neutral float-right" title="Bootstrapped DQN">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../pal/" class="btn btn-neutral" title="Persistent Advantage Learning"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" style="cursor: pointer">
<span class="rst-current-version" data-toggle="rst-current-version">
<span><a href="../pal/" style="color: #fcfcfc;">&laquo; Previous</a></span>
<span style="margin-left: 15px"><a href="../bs_dqn/" style="color: #fcfcfc">Next &raquo;</a></span>
</span>
</div>
<script>var base_url = '../../..';</script>
<script src="../../../js/theme.js"></script>
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script>
<script src="../../../search/require.js"></script>
<script src="../../../search/search.js"></script>
</body>
</html>