1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 11:40:18 +01:00
Files
coach/rl_coach/presets/Starcraft_CollectMinerals_Dueling_DDQN.py
2018-08-13 17:11:34 +03:00

66 lines
2.8 KiB
Python

from collections import OrderedDict
from rl_coach.architectures.tensorflow_components.heads.dueling_q_head import DuelingQHeadParameters
from rl_coach.base_parameters import VisualizationParameters, InputEmbedderParameters
from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod
from rl_coach.environments.starcraft2_environment import StarCraft2EnvironmentParameters
from rl_coach.filters.action.box_discretization import BoxDiscretization
from rl_coach.filters.filter import OutputFilter
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.memories.memory import MemoryGranularity
from rl_coach.schedules import LinearSchedule
from rl_coach.agents.ddqn_agent import DDQNAgentParameters
from rl_coach.core_types import RunPhase
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(50)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(50000)
#########
# Agent #
#########
agent_params = DDQNAgentParameters()
agent_params.network_wrappers['main'].learning_rate = 0.0001
agent_params.network_wrappers['main'].input_embedders_parameters = {
"screen": InputEmbedderParameters(input_rescaling={'image': 3.0})
}
agent_params.network_wrappers['main'].heads_parameters = [DuelingQHeadParameters()]
agent_params.memory.max_size = (MemoryGranularity.Transitions, 1000000)
# slave_agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(10000)
agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.1, 1000000)
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(4)
agent_params.output_filter = \
OutputFilter(
action_filters=OrderedDict([
('discretization', BoxDiscretization(num_bins_per_dimension=4, force_int_bins=True))
]),
is_a_reference_filter=False
)
###############
# Environment #
###############
env_params = StarCraft2EnvironmentParameters()
env_params.level = 'CollectMineralShards'
env_params.feature_screen_maps_to_use = [5]
env_params.feature_minimap_maps_to_use = [5]
vis_params = VisualizationParameters()
vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]
vis_params.dump_mp4 = False
# vis_params.dump_in_episode_signals = True
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=vis_params)