mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
82 lines
3.9 KiB
Python
82 lines
3.9 KiB
Python
from rl_coach.agents.dqn_agent import DQNAgentParameters
|
|
from rl_coach.architectures.tensorflow_components.architecture import Dense
|
|
from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, \
|
|
PresetValidationParameters
|
|
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
|
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters
|
|
from rl_coach.environments.gym_environment import Mujoco
|
|
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
|
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
|
from rl_coach.memories.episodic.episodic_hindsight_experience_replay import \
|
|
EpisodicHindsightExperienceReplayParameters, HindsightGoalSelectionMethod
|
|
from rl_coach.memories.memory import MemoryGranularity
|
|
from rl_coach.schedules import ConstantSchedule
|
|
from rl_coach.spaces import GoalsSpace, ReachingGoal
|
|
|
|
bit_length = 20
|
|
|
|
####################
|
|
# Graph Scheduling #
|
|
####################
|
|
schedule_params = ScheduleParameters()
|
|
schedule_params.improve_steps = EnvironmentEpisodes(16 * 50 * 200) # 200 epochs
|
|
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(16 * 50) # 50 cycles
|
|
schedule_params.evaluation_steps = EnvironmentEpisodes(10)
|
|
schedule_params.heatup_steps = EnvironmentSteps(0)
|
|
|
|
#########
|
|
# Agent #
|
|
#########
|
|
agent_params = DQNAgentParameters()
|
|
agent_params.network_wrappers['main'].learning_rate = 0.001
|
|
agent_params.network_wrappers['main'].batch_size = 128
|
|
agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense([256])]
|
|
agent_params.network_wrappers['main'].input_embedders_parameters = {
|
|
'state': InputEmbedderParameters(scheme=EmbedderScheme.Empty),
|
|
'desired_goal': InputEmbedderParameters(scheme=EmbedderScheme.Empty)}
|
|
agent_params.algorithm.discount = 0.98
|
|
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentEpisodes(16)
|
|
agent_params.algorithm.num_consecutive_training_steps = 40
|
|
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(40)
|
|
agent_params.algorithm.rate_for_copying_weights_to_target = 0.05
|
|
agent_params.memory.max_size = (MemoryGranularity.Transitions, 10**6)
|
|
agent_params.exploration.epsilon_schedule = ConstantSchedule(0.2)
|
|
agent_params.exploration.evaluation_epsilon = 0
|
|
|
|
agent_params.memory = EpisodicHindsightExperienceReplayParameters()
|
|
agent_params.memory.hindsight_goal_selection_method = HindsightGoalSelectionMethod.Final
|
|
agent_params.memory.hindsight_transitions_per_regular_transition = 1
|
|
agent_params.memory.goals_space = GoalsSpace(goal_name='state',
|
|
reward_type=ReachingGoal(distance_from_goal_threshold=0,
|
|
goal_reaching_reward=0,
|
|
default_reward=-1),
|
|
distance_metric=GoalsSpace.DistanceMetric.Euclidean)
|
|
|
|
###############
|
|
# Environment #
|
|
###############
|
|
env_params = Mujoco()
|
|
env_params.level = 'rl_coach.environments.toy_problems.bit_flip:BitFlip'
|
|
env_params.additional_simulator_parameters = {'bit_length': bit_length, 'mean_zero': True}
|
|
env_params.custom_reward_threshold = -bit_length + 1
|
|
|
|
vis_params = VisualizationParameters()
|
|
|
|
# currently no tests for this preset as the max reward can be accidently achieved. will be fixed with trace based tests.
|
|
|
|
########
|
|
# Test #
|
|
########
|
|
preset_validation_params = PresetValidationParameters()
|
|
preset_validation_params.test = True
|
|
preset_validation_params.min_reward_threshold = -15
|
|
preset_validation_params.max_episodes_to_achieve_reward = 10000
|
|
|
|
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
|
schedule_params=schedule_params, vis_params=vis_params,
|
|
preset_validation_params=preset_validation_params)
|
|
|
|
|
|
# self.algorithm.add_intrinsic_reward_for_reaching_the_goal = False
|
|
|