1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/graph_managers/graph_manager.py

498 lines
22 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import os
import time
from collections import OrderedDict
from typing import List, Tuple
from distutils.dir_util import copy_tree, remove_tree
import numpy as np
from rl_coach.base_parameters import iterable_to_items, TaskParameters, DistributedTaskParameters, VisualizationParameters, \
Parameters, PresetValidationParameters
from rl_coach.core_types import TotalStepsCounter, RunPhase, PlayingStepsType, TrainingSteps, EnvironmentEpisodes, \
EnvironmentSteps, \
StepMethod
from rl_coach.environments.environment import Environment
from rl_coach.level_manager import LevelManager
from rl_coach.utils import set_cpu
from rl_coach.logger import screen, Logger
class ScheduleParameters(Parameters):
def __init__(self):
super().__init__()
self.heatup_steps = None
self.evaluation_steps = None
self.steps_between_evaluation_periods = None
self.improve_steps = None
class HumanPlayScheduleParameters(ScheduleParameters):
def __init__(self):
super().__init__()
self.heatup_steps = EnvironmentSteps(0)
self.evaluation_steps = EnvironmentEpisodes(0)
self.steps_between_evaluation_periods = EnvironmentEpisodes(100000000)
self.improve_steps = TrainingSteps(10000000000)
class GraphManager(object):
"""
A graph manager is responsible for creating and initializing a graph of agents, including all its internal
components. It is then used in order to schedule the execution of operations on the graph, such as acting and
training.
"""
def __init__(self,
name: str,
schedule_params: ScheduleParameters,
vis_params: VisualizationParameters = VisualizationParameters()):
self.sess = None
self.level_managers = []
self.top_level_manager = None
self.environments = []
self.heatup_steps = schedule_params.heatup_steps
self.evaluation_steps = schedule_params.evaluation_steps
self.steps_between_evaluation_periods = schedule_params.steps_between_evaluation_periods
self.improve_steps = schedule_params.improve_steps
self.visualization_parameters = vis_params
self.name = name
self.task_parameters = None
self._phase = self.phase = RunPhase.UNDEFINED
self.preset_validation_params = PresetValidationParameters()
# timers
self.graph_initialization_time = time.time()
self.heatup_start_time = None
self.training_start_time = None
self.last_evaluation_start_time = None
self.last_checkpoint_saving_time = time.time()
# counters
self.total_steps_counters = {
RunPhase.HEATUP: TotalStepsCounter(),
RunPhase.TRAIN: TotalStepsCounter(),
RunPhase.TEST: TotalStepsCounter()
}
self.checkpoint_id = 0
self.checkpoint_saver = None
self.graph_logger = Logger()
def create_graph(self, task_parameters: TaskParameters):
self.task_parameters = task_parameters
if isinstance(task_parameters, DistributedTaskParameters):
screen.log_title("Creating graph - name: {} task id: {} type: {}".format(self.__class__.__name__,
task_parameters.task_index,
task_parameters.job_type))
else:
screen.log_title("Creating graph - name: {}".format(self.__class__.__name__))
# "hide" the gpu if necessary
if task_parameters.use_cpu:
set_cpu()
# create a target server for the worker and a device
if isinstance(task_parameters, DistributedTaskParameters):
task_parameters.worker_target, task_parameters.device = \
self.create_worker_or_parameters_server(task_parameters=task_parameters)
# create the graph modules
self.level_managers, self.environments = self._create_graph(task_parameters)
# set self as the parent of all the level managers
self.top_level_manager = self.level_managers[0]
for level_manager in self.level_managers:
level_manager.parent_graph_manager = self
# create a session (it needs to be created after all the graph ops were created)
self.sess = None
self.create_session(task_parameters=task_parameters)
self._phase = self.phase = RunPhase.UNDEFINED
self.setup_logger()
def _create_graph(self, task_parameters: TaskParameters) -> Tuple[List[LevelManager], List[Environment]]:
"""
Create all the graph modules and the graph scheduler
:param task_parameters: the parameters of the task
:return: the initialized level managers and environments
"""
raise NotImplementedError("")
def create_worker_or_parameters_server(self, task_parameters: DistributedTaskParameters):
import tensorflow as tf
config = tf.ConfigProto()
config.allow_soft_placement = True # allow placing ops on cpu if they are not fit for gpu
config.gpu_options.allow_growth = True # allow the gpu memory allocated for the worker to grow if needed
config.gpu_options.per_process_gpu_memory_fraction = 0.2
config.intra_op_parallelism_threads = 1
config.inter_op_parallelism_threads = 1
from rl_coach.architectures.tensorflow_components.distributed_tf_utils import create_and_start_parameters_server, \
create_cluster_spec, create_worker_server_and_device
# create cluster spec
cluster_spec = create_cluster_spec(parameters_server=task_parameters.parameters_server_hosts,
workers=task_parameters.worker_hosts)
# create and start parameters server (non-returning function) or create a worker and a device setter
if task_parameters.job_type == "ps":
create_and_start_parameters_server(cluster_spec=cluster_spec,
config=config)
elif task_parameters.job_type == "worker":
return create_worker_server_and_device(cluster_spec=cluster_spec,
task_index=task_parameters.task_index,
use_cpu=task_parameters.use_cpu,
config=config)
else:
raise ValueError("The job type should be either ps or worker and not {}"
.format(task_parameters.job_type))
def create_session(self, task_parameters: DistributedTaskParameters):
import tensorflow as tf
config = tf.ConfigProto()
config.allow_soft_placement = True # allow placing ops on cpu if they are not fit for gpu
config.gpu_options.allow_growth = True # allow the gpu memory allocated for the worker to grow if needed
# config.gpu_options.per_process_gpu_memory_fraction = 0.2
config.intra_op_parallelism_threads = 1
config.inter_op_parallelism_threads = 1
if isinstance(task_parameters, DistributedTaskParameters):
# the distributed tensorflow setting
from rl_coach.architectures.tensorflow_components.distributed_tf_utils import create_monitored_session
if hasattr(self.task_parameters, 'checkpoint_restore_dir') and self.task_parameters.checkpoint_restore_dir:
checkpoint_dir = os.path.join(task_parameters.experiment_path, 'checkpoint')
if os.path.exists(checkpoint_dir):
remove_tree(checkpoint_dir)
copy_tree(task_parameters.checkpoint_restore_dir, checkpoint_dir)
else:
checkpoint_dir = task_parameters.save_checkpoint_dir
self.sess = create_monitored_session(target=task_parameters.worker_target,
task_index=task_parameters.task_index,
checkpoint_dir=checkpoint_dir,
save_checkpoint_secs=task_parameters.save_checkpoint_secs,
config=config)
# set the session for all the modules
self.set_session(self.sess)
else:
self.variables_to_restore = tf.global_variables()
self.variables_to_restore = [v for v in self.variables_to_restore if '/online' in v.name]
self.checkpoint_saver = tf.train.Saver(self.variables_to_restore)
# regular session
self.sess = tf.Session(config=config)
# set the session for all the modules
self.set_session(self.sess)
# restore from checkpoint if given
self.restore_checkpoint()
def setup_logger(self) -> None:
# dump documentation
logger_prefix = "{graph_name}".format(graph_name=self.name)
self.graph_logger.set_logger_filenames(self.task_parameters.experiment_path, logger_prefix=logger_prefix,
add_timestamp=True, task_id=self.task_parameters.task_index)
if self.visualization_parameters.dump_parameters_documentation:
self.graph_logger.dump_documentation(str(self))
[manager.setup_logger() for manager in self.level_managers]
@property
def phase(self) -> RunPhase:
"""
Get the phase of the graph
:return: the current phase
"""
return self._phase
@phase.setter
def phase(self, val: RunPhase):
"""
Change the phase of the graph and all the hierarchy levels below it
:param val: the new phase
:return: None
"""
self._phase = val
for level_manager in self.level_managers:
level_manager.phase = val
for environment in self.environments:
environment.phase = val
def set_session(self, sess) -> None:
"""
Set the deep learning framework session for all the modules in the graph
:return: None
"""
[manager.set_session(sess) for manager in self.level_managers]
def heatup(self, steps: PlayingStepsType) -> None:
"""
Perform heatup for several steps, which means taking random actions and storing the results in memory
:param steps: the number of steps as a tuple of steps time and steps count
:return: None
"""
steps_copy = copy.copy(steps)
if steps_copy.num_steps > 0:
self.phase = RunPhase.HEATUP
screen.log_title("{}: Starting heatup".format(self.name))
self.heatup_start_time = time.time()
# reset all the levels before starting to heatup
self.reset_internal_state(force_environment_reset=True)
# act on the environment
while steps_copy.num_steps > 0:
steps_done, _ = self.act(steps_copy, continue_until_game_over=True, return_on_game_over=True)
steps_copy.num_steps -= steps_done
# training phase
self.phase = RunPhase.UNDEFINED
def handle_episode_ended(self) -> None:
"""
End an episode and reset all the episodic parameters
:return: None
"""
self.total_steps_counters[self.phase][EnvironmentEpisodes] += 1
# TODO: we should disentangle ending the episode from resetting the internal state
self.reset_internal_state()
def train(self, steps: TrainingSteps) -> None:
"""
Perform several training iterations for all the levels in the hierarchy
:param steps: number of training iterations to perform
:return: None
"""
# perform several steps of training interleaved with acting
count_end = self.total_steps_counters[RunPhase.TRAIN][TrainingSteps] + steps.num_steps
while self.total_steps_counters[RunPhase.TRAIN][TrainingSteps] < count_end:
self.total_steps_counters[RunPhase.TRAIN][TrainingSteps] += 1
losses = [manager.train() for manager in self.level_managers]
# self.loss.add_sample(loss)
def reset_internal_state(self, force_environment_reset=False) -> None:
"""
Reset an episode for all the levels
:param force_environment_reset: force the environment to reset the episode even if it has some conditions that
tell it not to. for example, if ale life is lost, gym will tell the agent that
the episode is finished but won't actually reset the episode if there are more
lives available
:return: None
"""
[environment.reset_internal_state(force_environment_reset) for environment in self.environments]
[manager.reset_internal_state() for manager in self.level_managers]
def act(self, steps: PlayingStepsType, return_on_game_over: bool=False, continue_until_game_over=False,
keep_networks_in_sync=False) -> (int, bool):
"""
Do several steps of acting on the environment
:param steps: the number of steps as a tuple of steps time and steps count
:param return_on_game_over: finish acting if an episode is finished
:param continue_until_game_over: continue playing until an episode was completed
:param keep_networks_in_sync: sync the network parameters with the global network before each episode
:return: the actual number of steps done, a boolean value that represent if the episode was done when finishing
the function call
"""
# perform several steps of playing
result = None
hold_until_a_full_episode = True if continue_until_game_over else False
initial_count = self.total_steps_counters[self.phase][steps.__class__]
count_end = initial_count + steps.num_steps
# The assumption here is that the total_steps_counters are each updated when an event
# takes place (i.e. an episode ends)
# TODO - The counter of frames is not updated correctly. need to fix that.
while self.total_steps_counters[self.phase][steps.__class__] < count_end or hold_until_a_full_episode:
current_steps = self.environments[0].total_steps_counter
result = self.top_level_manager.step(None)
# result will be None if at least one level_manager decided not to play (= all of his agents did not play)
# causing the rest of the level_managers down the stack not to play either, and thus the entire graph did
# not act
if result is None:
break
# add the diff between the total steps before and after stepping, such that environment initialization steps
# (like in Atari) will not be counted
self.total_steps_counters[self.phase][EnvironmentSteps] += \
self.environments[0].total_steps_counter - current_steps
if result.game_over:
hold_until_a_full_episode = False
self.handle_episode_ended()
if keep_networks_in_sync:
self.sync_graph()
if return_on_game_over:
return self.total_steps_counters[self.phase][EnvironmentSteps] - initial_count, True
# return the game over status
if result:
return self.total_steps_counters[self.phase][EnvironmentSteps] - initial_count, result.game_over
else:
return self.total_steps_counters[self.phase][EnvironmentSteps] - initial_count, False
def train_and_act(self, steps: StepMethod) -> None:
"""
Train the agent by doing several acting steps followed by several training steps continually
:param steps: the number of steps as a tuple of steps time and steps count
:return: None
"""
# perform several steps of training interleaved with acting
if steps.num_steps > 0:
self.phase = RunPhase.TRAIN
count_end = self.total_steps_counters[self.phase][steps.__class__] + steps.num_steps
self.reset_internal_state(force_environment_reset=True)
#TODO - the below while loop should end with full episodes, so to avoid situations where we have partial
# episodes in memory
while self.total_steps_counters[self.phase][steps.__class__] < count_end:
# The actual steps being done on the environment are decided by the agents themselves.
# This is just an high-level controller.
self.act(EnvironmentSteps(1))
self.train(TrainingSteps(1))
self.save_checkpoint()
self.phase = RunPhase.UNDEFINED
def sync_graph(self) -> None:
"""
Sync the global network parameters to the graph
:return:
"""
[manager.sync() for manager in self.level_managers]
def evaluate(self, steps: PlayingStepsType, keep_networks_in_sync: bool=False) -> None:
"""
Perform evaluation for several steps
:param steps: the number of steps as a tuple of steps time and steps count
:param keep_networks_in_sync: sync the network parameters with the global network before each episode
:return: None
"""
if steps.num_steps > 0:
self.phase = RunPhase.TEST
self.last_evaluation_start_time = time.time()
# reset all the levels before starting to evaluate
self.reset_internal_state(force_environment_reset=True)
self.sync_graph()
count_end = self.total_steps_counters[self.phase][steps.__class__] + steps.num_steps
while self.total_steps_counters[self.phase][steps.__class__] < count_end:
steps_done, _ = self.act(steps, continue_until_game_over=True, return_on_game_over=True,
keep_networks_in_sync=keep_networks_in_sync)
self.phase = RunPhase.UNDEFINED
def restore_checkpoint(self):
# TODO: find better way to load checkpoints that were saved with a global network into the online network
if hasattr(self.task_parameters, 'checkpoint_restore_dir') and self.task_parameters.checkpoint_restore_dir:
import tensorflow as tf
checkpoint_dir = self.task_parameters.checkpoint_restore_dir
checkpoint = tf.train.get_checkpoint_state(checkpoint_dir)
screen.log_title("Loading checkpoint: {}".format(checkpoint.model_checkpoint_path))
variables = {}
for var_name, _ in tf.contrib.framework.list_variables(self.task_parameters.checkpoint_restore_dir):
# Load the variable
var = tf.contrib.framework.load_variable(checkpoint_dir, var_name)
# Set the new name
new_name = var_name
new_name = new_name.replace('global/', 'online/')
variables[new_name] = var
for v in self.variables_to_restore:
self.sess.run(v.assign(variables[v.name.split(':')[0]]))
def save_checkpoint(self):
# only the chief process saves checkpoints
if self.task_parameters.save_checkpoint_secs \
and time.time() - self.last_checkpoint_saving_time >= self.task_parameters.save_checkpoint_secs\
and self.task_parameters.task_index == 0:
checkpoint_path = os.path.join(self.task_parameters.save_checkpoint_dir,
"{}_Step-{}.ckpt".format(
self.checkpoint_id,
self.total_steps_counters[RunPhase.TRAIN][EnvironmentSteps]))
if not isinstance(self.task_parameters, DistributedTaskParameters):
saved_checkpoint_path = self.checkpoint_saver.save(self.sess, checkpoint_path)
else:
saved_checkpoint_path = checkpoint_path
# this is required in order for agents to save additional information like a DND for example
[manager.save_checkpoint(self.checkpoint_id) for manager in self.level_managers]
screen.log_dict(
OrderedDict([
("Saving in path", saved_checkpoint_path),
]),
prefix="Checkpoint"
)
self.checkpoint_id += 1
self.last_checkpoint_saving_time = time.time()
def improve(self):
"""
The main loop of the run.
Defined in the following steps:
1. Heatup
2. Repeat:
2.1. Repeat:
2.1.1. Act
2.1.2. Train
2.1.3. Possibly save checkpoint
2.2. Evaluate
:return: None
"""
# initialize the network parameters from the global network
self.sync_graph()
# heatup
self.heatup(self.heatup_steps)
# improve
if self.task_parameters.task_index is not None:
screen.log_title("Starting to improve {} task index {}".format(self.name, self.task_parameters.task_index))
else:
screen.log_title("Starting to improve {}".format(self.name))
self.training_start_time = time.time()
count_end = self.improve_steps.num_steps
while self.total_steps_counters[RunPhase.TRAIN][self.improve_steps.__class__] < count_end:
self.train_and_act(self.steps_between_evaluation_periods)
self.evaluate(self.evaluation_steps)
def __str__(self):
result = ""
for key, val in self.__dict__.items():
params = ""
if isinstance(val, list) or isinstance(val, dict) or isinstance(val, OrderedDict):
items = iterable_to_items(val)
for k, v in items:
params += "{}: {}\n".format(k, v)
else:
params = val
result += "{}: \n{}\n".format(key, params)
return result