mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
59 lines
2.6 KiB
Python
59 lines
2.6 KiB
Python
from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, PresetValidationParameters
|
|
from rl_coach.environments.environment import SelectedPhaseOnlyDumpMethod, MaxDumpMethod
|
|
from rl_coach.environments.gym_environment import Mujoco
|
|
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
|
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
|
from rl_coach.schedules import LinearSchedule
|
|
|
|
from rl_coach.agents.dfp_agent import DFPAgentParameters, HandlingTargetsAfterEpisodeEnd
|
|
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
|
|
|
|
####################
|
|
# Graph Scheduling #
|
|
####################
|
|
|
|
schedule_params = ScheduleParameters()
|
|
schedule_params.improve_steps = TrainingSteps(10000000000)
|
|
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
|
|
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
|
|
schedule_params.heatup_steps = EnvironmentSteps(100)
|
|
|
|
|
|
#########
|
|
# Agent #
|
|
#########
|
|
agent_params = DFPAgentParameters()
|
|
agent_params.network_wrappers['main'].learning_rate = 0.0001
|
|
agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = EmbedderScheme.Medium
|
|
agent_params.network_wrappers['main'].input_embedders_parameters['goal'].scheme = EmbedderScheme.Medium
|
|
agent_params.network_wrappers['main'].input_embedders_parameters['measurements'].scheme = EmbedderScheme.Medium
|
|
agent_params.exploration.epsilon_schedule = LinearSchedule(0.5, 0.01, 3000)
|
|
agent_params.exploration.evaluation_epsilon = 0.01
|
|
agent_params.algorithm.discount = 1.0
|
|
agent_params.algorithm.use_accumulated_reward_as_measurement = True
|
|
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)
|
|
agent_params.algorithm.goal_vector = [1] # accumulated_reward
|
|
agent_params.algorithm.handling_targets_after_episode_end = HandlingTargetsAfterEpisodeEnd.LastStep
|
|
|
|
###############
|
|
# Environment #
|
|
###############
|
|
env_params = Mujoco()
|
|
env_params.level = 'CartPole-v0'
|
|
|
|
vis_params = VisualizationParameters()
|
|
vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]
|
|
vis_params.dump_mp4 = False
|
|
|
|
########
|
|
# Test #
|
|
########
|
|
preset_validation_params = PresetValidationParameters()
|
|
preset_validation_params.test = True
|
|
preset_validation_params.min_reward_threshold = 150
|
|
preset_validation_params.max_episodes_to_achieve_reward = 250
|
|
|
|
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
|
schedule_params=schedule_params, vis_params=vis_params,
|
|
preset_validation_params=preset_validation_params)
|