mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
1137 lines
42 KiB
Python
1137 lines
42 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from configurations import *
|
|
import ast
|
|
import sys
|
|
|
|
|
|
def json_to_preset(json_path):
|
|
with open(json_path, 'r') as json_file:
|
|
run_dict = json.loads(json_file.read())
|
|
|
|
if run_dict['preset'] is None:
|
|
tuning_parameters = Preset(eval(run_dict['agent_type']), eval(run_dict['environment_type']),
|
|
eval(run_dict['exploration_policy_type']))
|
|
else:
|
|
tuning_parameters = eval(run_dict['preset'])()
|
|
# Override existing parts of the preset
|
|
if run_dict['agent_type'] is not None:
|
|
tuning_parameters.agent = eval(run_dict['agent_type'])()
|
|
|
|
if run_dict['environment_type'] is not None:
|
|
tuning_parameters.agent = eval(run_dict['environment_type'])()
|
|
|
|
if run_dict['exploration_policy_type'] is not None:
|
|
tuning_parameters.agent = eval(run_dict['exploration_policy_type'])()
|
|
|
|
if run_dict['custom_parameter'] is not None:
|
|
unstripped_key_value_pairs = [pair.split('=') for pair in run_dict['custom_parameter'].split(';')]
|
|
stripped_key_value_pairs = [tuple([pair[0].strip(), ast.literal_eval(pair[1].strip())]) for pair in
|
|
unstripped_key_value_pairs]
|
|
|
|
# load custom parameters into run_dict
|
|
for key, value in stripped_key_value_pairs:
|
|
run_dict[key] = value
|
|
|
|
for key in ['agent_type', 'environment_type', 'exploration_policy_type', 'preset', 'custom_parameter']:
|
|
run_dict.pop(key, None)
|
|
|
|
# load parameters from run_dict to tuning_parameters
|
|
for key, value in run_dict.items():
|
|
if ((sys.version_info[0] == 2 and type(value) == unicode) or
|
|
(sys.version_info[0] == 3 and type(value) == str)):
|
|
value = '"{}"'.format(value)
|
|
exec('tuning_parameters.{} = {}'.format(key, value)) in globals(), locals()
|
|
|
|
return tuning_parameters
|
|
|
|
|
|
class Doom_Basic_DQN(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DQN, Doom, ExplorationParameters)
|
|
self.env.level = 'basic'
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 1000
|
|
self.num_heatup_steps = 1000
|
|
|
|
|
|
class Doom_Basic_OneStepQ(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NStepQ, Doom, ExplorationParameters)
|
|
self.env.level = 'basic'
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 100
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.clip_gradients = 1000
|
|
self.agent.targets_horizon = '1-Step'
|
|
|
|
|
|
class Doom_Basic_NStepQ(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NStepQ, Doom, ExplorationParameters)
|
|
self.env.level = 'basic'
|
|
self.learning_rate = 0.000025
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 1000
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.clip_gradients = 1000
|
|
|
|
|
|
class Doom_Basic_A2C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, Doom, CategoricalExploration)
|
|
self.env.level = 'basic'
|
|
self.agent.policy_gradient_rescaler = 'A_VALUE'
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 100
|
|
self.env.reward_scaling = 100.
|
|
|
|
|
|
class Doom_Basic_Dueling_DDQN(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DDQN, Doom, ExplorationParameters)
|
|
self.env.level = 'basic'
|
|
self.agent.output_types = [OutputTypes.DuelingQ]
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 1000
|
|
self.num_heatup_steps = 1000
|
|
|
|
class Doom_Basic_Dueling_DQN(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DuelingDQN, Doom, ExplorationParameters)
|
|
self.env.level = 'basic'
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 1000
|
|
self.num_heatup_steps = 1000
|
|
|
|
|
|
class CartPole_Dueling_DDQN(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DDQN, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'CartPole-v0'
|
|
self.agent.output_types = [OutputTypes.DuelingQ]
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 100
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 3000
|
|
self.agent.discount = 1.0
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 100
|
|
self.test_min_return_threshold = 150
|
|
|
|
|
|
class Doom_Health_MMC(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, MMC, Doom, ExplorationParameters)
|
|
self.env.level = 'HEALTH_GATHERING'
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 1000
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 10000
|
|
|
|
class CartPole_MMC(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, MMC, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'CartPole-v0'
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 100
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 3000
|
|
self.agent.discount = 1.0
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 90
|
|
self.test_min_return_threshold = 150
|
|
|
|
|
|
class CartPole_PAL(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, PAL, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'CartPole-v0'
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 100
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 3000
|
|
self.agent.discount = 1.0
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 100
|
|
self.test_min_return_threshold = 150
|
|
|
|
class Doom_Basic_DFP(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DFP, Doom, ExplorationParameters)
|
|
self.env.level = 'BASIC'
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 10000
|
|
self.agent.use_accumulated_reward_as_measurement = True
|
|
self.agent.goal_vector = [0.0, 1.0]
|
|
# self.agent.num_consecutive_playing_steps = 10
|
|
|
|
|
|
class Doom_Health_DFP(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DFP, Doom, ExplorationParameters)
|
|
self.env.level = 'HEALTH_GATHERING'
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 10000
|
|
|
|
|
|
class Doom_Deadly_Corridor_Bootstrapped_DQN(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, BootstrappedDQN, Doom, BootstrappedDQNExploration)
|
|
self.env.level = 'deadly_corridor'
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 1000
|
|
self.num_heatup_steps = 1000
|
|
|
|
class CartPole_Bootstrapped_DQN(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, BootstrappedDQN, GymVectorObservation, BootstrappedDQNExploration)
|
|
self.env.level = 'CartPole-v0'
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 200
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 3000
|
|
self.agent.discount = 1.0
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 200
|
|
self.test_min_return_threshold = 150
|
|
|
|
class CartPole_PG(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, PolicyGradient, GymVectorObservation, CategoricalExploration)
|
|
self.env.level = 'CartPole-v0'
|
|
self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP'
|
|
self.learning_rate = 0.001
|
|
self.num_heatup_steps = 100
|
|
self.agent.discount = 1.0
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 150
|
|
self.test_min_return_threshold = 150
|
|
|
|
|
|
class CartPole_PPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, PPO, GymVectorObservation, CategoricalExploration)
|
|
self.env.level = 'CartPole-v0'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 512
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 128
|
|
self.agent.policy_gradient_rescaler = 'A_VALUE'
|
|
self.agent.optimizer_type = 'LBFGS'
|
|
self.env.normalize_observation = True
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 200
|
|
self.test_min_return_threshold = 150
|
|
|
|
class CartPole_ClippedPPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, GymVectorObservation, CategoricalExploration)
|
|
self.env.level = 'CartPole-v0'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 512
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 64
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.env.normalize_observation = True
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 200
|
|
self.test_min_return_threshold = 150
|
|
|
|
class CartPole_A2C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, GymVectorObservation, CategoricalExploration)
|
|
self.env.level = 'CartPole-v0'
|
|
self.agent.policy_gradient_rescaler = 'A_VALUE'
|
|
self.learning_rate = 0.001
|
|
self.num_heatup_steps = 0
|
|
self.env.reward_scaling = 200.
|
|
self.agent.discount = 1.0
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 300
|
|
self.test_min_return_threshold = 150
|
|
|
|
|
|
class CartPole_OneStepQ(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NStepQ, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'CartPole-v0'
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 100
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.discount = 1.0
|
|
self.agent.targets_horizon = '1-Step'
|
|
|
|
|
|
class CartPole_NStepQ(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NStepQ, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'CartPole-v0'
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 100
|
|
self.learning_rate = 0.0001
|
|
self.exploration.epsilon_decay_steps = 10000
|
|
self.num_heatup_steps = 0
|
|
self.agent.discount = 0.99
|
|
self.agent.num_steps_between_gradient_updates = 5
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 1000
|
|
self.test_min_return_threshold = 150
|
|
self.test_num_workers = 8
|
|
|
|
class CartPole_DQN(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DQN, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'CartPole-v0'
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 100
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 3000
|
|
self.agent.discount = 1.0
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 150
|
|
self.test_min_return_threshold = 150
|
|
|
|
|
|
class CartPole_DistributionalDQN(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DistributionalDQN, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'CartPole-v0'
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 100
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 3000
|
|
self.agent.discount = 1.0
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 150
|
|
self.test_min_return_threshold = 150
|
|
|
|
|
|
# The below preset matches the hyper-parameters setting as in the original DQN paper.
|
|
# This a very resource intensive preset, and might easily blow up your RAM (> 100GB of usage).
|
|
# Try reducing the number of transitions in the experience replay (50e3 might be a reasonable number to start with),
|
|
# so to make sure it fits your RAM.
|
|
class Breakout_DQN(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DQN, Atari, ExplorationParameters)
|
|
self.env.level = 'BreakoutDeterministic-v4'
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 10000
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_transitions_in_experience_replay = 1000000
|
|
self.exploration.initial_epsilon = 1.0
|
|
self.exploration.final_epsilon = 0.1
|
|
self.exploration.epsilon_decay_steps = 1000000
|
|
self.exploration.evaluation_policy = 'EGreedy'
|
|
self.exploration.evaluation_epsilon = 0.05
|
|
self.num_heatup_steps = 50000
|
|
self.evaluation_episodes = 25
|
|
self.evaluate_every_x_episodes = 1000
|
|
|
|
|
|
class Breakout_DistributionalDQN(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DistributionalDQN, Atari, ExplorationParameters)
|
|
self.env.level = 'BreakoutDeterministic-v4'
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 10000
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_transitions_in_experience_replay = 1000000
|
|
self.exploration.initial_epsilon = 0.01
|
|
self.exploration.final_epsilon = 0.01
|
|
self.exploration.epsilon_decay_steps = 1000000
|
|
self.exploration.evaluation_policy = 'EGreedy'
|
|
self.exploration.evaluation_epsilon = 0.001
|
|
self.num_heatup_steps = 50000
|
|
self.evaluation_episodes = 25
|
|
self.evaluate_every_x_episodes = 10000
|
|
|
|
|
|
class Atari_DQN_TestBench(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DQN, Atari, ExplorationParameters)
|
|
self.env.level = 'BreakoutDeterministic-v4'
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 10000
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_transitions_in_experience_replay = 1000000
|
|
self.exploration.initial_epsilon = 1.0
|
|
self.exploration.final_epsilon = 0.1
|
|
self.exploration.epsilon_decay_steps = 1000000
|
|
self.exploration.evaluation_policy = 'EGreedy'
|
|
self.exploration.evaluation_epsilon = 0.05
|
|
self.num_heatup_steps = 10000
|
|
self.evaluation_episodes = 25
|
|
self.evaluate_every_x_episodes = 1000
|
|
self.num_training_iterations = 500
|
|
|
|
|
|
class Doom_Basic_PG(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, PolicyGradient, Doom, CategoricalExploration)
|
|
self.env.level = 'basic'
|
|
self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP'
|
|
self.learning_rate = 0.00001
|
|
self.num_heatup_steps = 0
|
|
self.agent.beta_entropy = 0.01
|
|
|
|
|
|
class InvertedPendulum_PG(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, PolicyGradient, GymVectorObservation, AdditiveNoiseExploration)
|
|
self.env.level = 'InvertedPendulum-v1'
|
|
self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP'
|
|
self.learning_rate = 0.001
|
|
self.num_heatup_steps = 0
|
|
|
|
|
|
class Pendulum_PG(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, PolicyGradient, GymVectorObservation, AdditiveNoiseExploration)
|
|
self.env.level = 'Pendulum-v0'
|
|
self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP'
|
|
self.learning_rate = 0.001
|
|
self.num_heatup_steps = 0
|
|
self.agent.apply_gradients_every_x_episodes = 10
|
|
|
|
|
|
class Pendulum_DDPG(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DDPG, GymVectorObservation, AdditiveNoiseExploration)
|
|
self.env.level = 'Pendulum-v0'
|
|
self.learning_rate = 0.001
|
|
self.num_heatup_steps = 1000
|
|
self.env.normalize_observation = False
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 100
|
|
self.test_min_return_threshold = -250
|
|
|
|
|
|
class InvertedPendulum_DDPG(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DDPG, GymVectorObservation, OUExploration)
|
|
self.env.level = 'InvertedPendulum-v1'
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 100
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class InvertedPendulum_PPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, PPO, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'InvertedPendulum-v1'
|
|
self.learning_rate = 0.001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 5000
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 128
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.96
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.agent.shared_optimizer = False
|
|
self.agent.async_training = True
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Pendulum_ClippedPPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'Pendulum-v0'
|
|
self.learning_rate = 0.00005
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 2048
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 64
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.env.normalize_observation = True
|
|
self.agent.beta_entropy = 0.01
|
|
|
|
|
|
class Hopper_DPPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, PPO, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'Hopper-v1'
|
|
self.learning_rate = 0.00001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 5000
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 128
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.96
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.agent.async_training = True
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class InvertedPendulum_ClippedPPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'InvertedPendulum-v1'
|
|
self.learning_rate = 0.00005
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 2048
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 64
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.env.normalize_observation = True
|
|
|
|
class Humanoid_ClippedPPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'Humanoid-v1'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 2048
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 64
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Hopper_ClippedPPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'Hopper-v1'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 2048
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 64
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class InvertedPendulum_ClippedPPO_Roboschool(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, Roboschool, ExplorationParameters)
|
|
self.env.level = 'RoboschoolInvertedPendulum-v1'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 2048
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 64
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class HalfCheetah_ClippedPPO_Roboschool(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, Roboschool, ExplorationParameters)
|
|
self.env.level = 'RoboschoolHalfCheetah-v1'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 2048
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 64
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Hopper_ClippedPPO_Roboschool(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, Roboschool, ExplorationParameters)
|
|
self.env.level = 'RoboschoolHopper-v1'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 2048
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 64
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Ant_ClippedPPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'Ant-v1'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 2048
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 64
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Hopper_ClippedPPO_Distributed(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'Hopper-v1'
|
|
self.learning_rate = 0.00001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 10000
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 128
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'LBFGS'
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Hopper_DDPG_Roboschool(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DDPG, Roboschool, OUExploration)
|
|
self.env.level = 'RoboschoolHopper-v1'
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 100
|
|
|
|
|
|
class Hopper_PPO_Roboschool(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, PPO, Roboschool, ExplorationParameters)
|
|
self.env.level = 'RoboschoolHopper-v1'
|
|
self.learning_rate = 0.001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 5000
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 128
|
|
self.agent.policy_gradient_rescaler = 'GENERALIZED_ADVANTAGE_ESTIMATION'
|
|
self.agent.gae_lambda = 0.96
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'LBFGS'
|
|
|
|
|
|
class Hopper_DDPG(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DDPG, GymVectorObservation, OUExploration)
|
|
self.env.level = 'Hopper-v1'
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 100
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Hopper_DDDPG(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DDDPG, GymVectorObservation, OUExploration)
|
|
self.env.level = 'Hopper-v1'
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 100
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Hopper_PPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, PPO, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'Hopper-v1'
|
|
self.learning_rate = 0.001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 5000
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 128
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.96
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'LBFGS'
|
|
# self.clip_gradients = 2
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Walker_PPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, PPO, GymVectorObservation, AdditiveNoiseExploration)
|
|
self.env.level = 'Walker2d-v1'
|
|
self.learning_rate = 0.001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 5000
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 128
|
|
self.agent.policy_gradient_rescaler = 'A_VALUE'
|
|
self.agent.gae_lambda = 0.96
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'LBFGS'
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class HalfCheetah_DDPG(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DDPG, GymVectorObservation, OUExploration)
|
|
self.env.level = 'HalfCheetah-v1'
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 1000
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Ant_DDPG(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DDPG, GymVectorObservation, OUExploration)
|
|
self.env.level = 'Ant-v1'
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 1000
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Pendulum_NAF(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NAF, GymVectorObservation, AdditiveNoiseExploration)
|
|
self.env.level = 'Pendulum-v0'
|
|
self.learning_rate = 0.001
|
|
self.num_heatup_steps = 1000
|
|
self.batch_size = 100
|
|
# self.env.reward_scaling = 1000
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 100
|
|
self.test_min_return_threshold = -250
|
|
|
|
|
|
class InvertedPendulum_NAF(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NAF, GymVectorObservation, AdditiveNoiseExploration)
|
|
self.env.level = 'InvertedPendulum-v1'
|
|
self.learning_rate = 0.001
|
|
self.num_heatup_steps = 1000
|
|
self.batch_size = 100
|
|
|
|
|
|
class Hopper_NAF(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NAF, GymVectorObservation, AdditiveNoiseExploration)
|
|
self.env.level = 'Hopper-v1'
|
|
self.learning_rate = 0.0005
|
|
self.num_heatup_steps = 1000
|
|
self.batch_size = 100
|
|
self.agent.async_training = True
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class CartPole_NEC(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NEC, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'CartPole-v0'
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 1000
|
|
self.exploration.final_epsilon = 0.1
|
|
self.agent.discount = 1.0
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 200
|
|
self.test_min_return_threshold = 150
|
|
|
|
|
|
class Doom_Basic_NEC(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NEC, Doom, ExplorationParameters)
|
|
self.env.level = 'basic'
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 1000
|
|
self.agent.num_playing_steps_between_two_training_steps = 1
|
|
|
|
|
|
class Montezuma_NEC(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NEC, Atari, ExplorationParameters)
|
|
self.env.level = 'MontezumaRevenge-v0'
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 1000
|
|
self.agent.num_playing_steps_between_two_training_steps = 1
|
|
|
|
|
|
class Breakout_NEC(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NEC, Atari, ExplorationParameters)
|
|
self.env.level = 'BreakoutDeterministic-v4'
|
|
self.learning_rate = 0.00025
|
|
self.agent.num_transitions_in_experience_replay = 1000000
|
|
self.exploration.initial_epsilon = 1.0
|
|
self.exploration.final_epsilon = 0.1
|
|
self.exploration.epsilon_decay_steps = 1000000
|
|
self.num_heatup_steps = 50000
|
|
|
|
|
|
class Doom_Health_NEC(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NEC, Doom, ExplorationParameters)
|
|
self.env.level = 'HEALTH_GATHERING'
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 10000
|
|
self.agent.num_playing_steps_between_two_training_steps = 1
|
|
|
|
|
|
class Doom_Health_DQN(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, DQN, Doom, ExplorationParameters)
|
|
self.env.level = 'HEALTH_GATHERING'
|
|
self.agent.num_episodes_in_experience_replay = 200
|
|
self.learning_rate = 0.00025
|
|
self.num_heatup_steps = 1000
|
|
self.exploration.epsilon_decay_steps = 10000
|
|
self.agent.num_steps_between_copying_online_weights_to_target = 1000
|
|
|
|
|
|
class Pong_NEC(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, NEC, Atari, ExplorationParameters)
|
|
self.env.level = 'PongDeterministic-v4'
|
|
self.learning_rate = 0.001
|
|
self.agent.num_transitions_in_experience_replay = 100000
|
|
self.exploration.initial_epsilon = 0.5
|
|
self.exploration.final_epsilon = 0.1
|
|
self.exploration.epsilon_decay_steps = 1000000
|
|
self.num_heatup_steps = 50000
|
|
|
|
|
|
class CartPole_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, GymVectorObservation, CategoricalExploration)
|
|
self.env.level = 'CartPole-v0'
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.env.reward_scaling = 200.
|
|
self.agent.discount = 0.99
|
|
self.agent.apply_gradients_every_x_episodes = 1
|
|
self.agent.gae_lambda = 1
|
|
self.agent.beta_entropy = 0.01
|
|
self.agent.num_steps_between_gradient_updates = 5
|
|
self.agent.middleware_type = MiddlewareTypes.FC
|
|
|
|
self.test = True
|
|
self.test_max_step_threshold = 200
|
|
self.test_min_return_threshold = 150
|
|
self.test_num_workers = 8
|
|
|
|
|
|
class MountainCar_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, GymVectorObservation, CategoricalExploration)
|
|
self.env.level = 'MountainCar-v0'
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.env.reward_scaling = 200.
|
|
self.agent.discount = 0.99
|
|
self.agent.apply_gradients_every_x_episodes = 1
|
|
self.agent.gae_lambda = 1
|
|
self.agent.beta_entropy = 0.01
|
|
self.agent.num_steps_between_gradient_updates = 5
|
|
self.agent.middleware_type = MiddlewareTypes.FC
|
|
|
|
|
|
class InvertedPendulum_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
|
|
self.env.level = 'InvertedPendulum-v1'
|
|
self.agent.policy_gradient_rescaler = 'A_VALUE'
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.env.reward_scaling = 200.
|
|
self.agent.discount = 0.99
|
|
self.agent.apply_gradients_every_x_episodes = 1
|
|
self.agent.num_steps_between_gradient_updates = 30
|
|
self.agent.gae_lambda = 1
|
|
self.agent.beta_entropy = 0.005
|
|
self.clip_gradients = 40
|
|
self.agent.middleware_type = MiddlewareTypes.FC
|
|
|
|
|
|
class Hopper_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
|
|
self.env.level = 'Hopper-v1'
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.learning_rate = 0.00002
|
|
self.num_heatup_steps = 0
|
|
self.env.reward_scaling = 20.
|
|
self.agent.discount = 0.99
|
|
self.agent.apply_gradients_every_x_episodes = 1
|
|
self.agent.num_steps_between_gradient_updates = 20
|
|
self.agent.gae_lambda = 0.98
|
|
self.agent.beta_entropy = 0.005
|
|
self.clip_gradients = 40
|
|
self.agent.middleware_type = MiddlewareTypes.FC
|
|
|
|
|
|
class HopperIceWall_A3C(Hopper_A3C):
|
|
def __init__(self):
|
|
Hopper_A3C.__init__(self)
|
|
self.env.level = 'HopperIceWall-v0'
|
|
|
|
|
|
class HopperStairs_A3C(Hopper_A3C):
|
|
def __init__(self):
|
|
Hopper_A3C.__init__(self)
|
|
self.env.level = 'HopperStairs-v0'
|
|
|
|
|
|
class HopperBullet_A3C(Hopper_A3C):
|
|
def __init__(self):
|
|
Hopper_A3C.__init__(self)
|
|
self.env.level = 'HopperBulletEnv-v0'
|
|
|
|
|
|
class Kuka_ClippedPPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'KukaBulletEnv-v0'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 2048
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 64
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Minitaur_ClippedPPO(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
|
|
self.env.level = 'MinitaurBulletEnv-v0'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.num_consecutive_training_steps = 1
|
|
self.agent.num_consecutive_playing_steps = 2048
|
|
self.agent.discount = 0.99
|
|
self.batch_size = 64
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.gae_lambda = 0.95
|
|
self.visualization.dump_csv = True
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Walker_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
|
|
self.env.level = 'Walker2d-v1'
|
|
self.agent.policy_gradient_rescaler = 'A_VALUE'
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.learning_rate = 0.00002
|
|
self.num_heatup_steps = 0
|
|
self.env.reward_scaling = 20.
|
|
self.agent.discount = 0.99
|
|
self.agent.apply_gradients_every_x_episodes = 1
|
|
self.agent.num_steps_between_gradient_updates = 20
|
|
self.agent.gae_lambda = 1
|
|
self.agent.beta_entropy = 0.005
|
|
self.clip_gradients = 40
|
|
self.agent.middleware_type = MiddlewareTypes.FC
|
|
|
|
|
|
class Ant_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
|
|
self.env.level = 'Ant-v1'
|
|
self.agent.policy_gradient_rescaler = 'A_VALUE'
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.learning_rate = 0.00002
|
|
self.num_heatup_steps = 0
|
|
self.env.reward_scaling = 20.
|
|
self.agent.discount = 0.99
|
|
self.agent.apply_gradients_every_x_episodes = 1
|
|
self.agent.num_steps_between_gradient_updates = 20
|
|
self.agent.gae_lambda = 1
|
|
self.agent.beta_entropy = 0.005
|
|
self.clip_gradients = 40
|
|
self.agent.middleware_type = MiddlewareTypes.FC
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class AntBullet_A3C(Ant_A3C):
|
|
def __init__(self):
|
|
Ant_A3C.__init__(self)
|
|
self.env.level = 'AntBulletEnv-v0'
|
|
|
|
|
|
class AntMaze_A3C(Ant_A3C):
|
|
def __init__(self):
|
|
Ant_A3C.__init__(self)
|
|
self.env.level = 'AntMaze-v0'
|
|
|
|
|
|
class Humanoid_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
|
|
self.env.level = 'Humanoid-v1'
|
|
self.agent.policy_gradient_rescaler = 'A_VALUE'
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.learning_rate = 0.00002
|
|
self.num_heatup_steps = 0
|
|
self.env.reward_scaling = 20.
|
|
self.agent.discount = 0.99
|
|
self.agent.apply_gradients_every_x_episodes = 1
|
|
self.agent.num_steps_between_gradient_updates = 20
|
|
self.agent.gae_lambda = 1
|
|
self.agent.beta_entropy = 0.005
|
|
self.clip_gradients = 40
|
|
self.agent.middleware_type = MiddlewareTypes.FC
|
|
self.env.normalize_observation = True
|
|
|
|
|
|
class Pendulum_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
|
|
self.env.level = 'Pendulum-v0'
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.agent.optimizer_type = 'Adam'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.agent.discount = 0.99
|
|
self.agent.num_steps_between_gradient_updates = 5
|
|
self.agent.gae_lambda = 1
|
|
|
|
|
|
|
|
class BipedalWalker_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
|
|
self.env.level = 'BipedalWalker-v2'
|
|
self.agent.policy_gradient_rescaler = 'A_VALUE'
|
|
self.agent.optimizer_type = 'RMSProp'
|
|
self.learning_rate = 0.00002
|
|
self.num_heatup_steps = 0
|
|
self.env.reward_scaling = 50.
|
|
self.agent.discount = 0.99
|
|
self.agent.apply_gradients_every_x_episodes = 1
|
|
self.agent.num_steps_between_gradient_updates = 10
|
|
self.agent.gae_lambda = 1
|
|
self.agent.beta_entropy = 0.005
|
|
self.clip_gradients = None
|
|
self.agent.middleware_type = MiddlewareTypes.FC
|
|
|
|
|
|
class Doom_Basic_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, Doom, CategoricalExploration)
|
|
self.env.level = 'basic'
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.env.reward_scaling = 100.
|
|
self.agent.discount = 0.99
|
|
self.agent.apply_gradients_every_x_episodes = 1
|
|
self.agent.num_steps_between_gradient_updates = 30
|
|
self.agent.gae_lambda = 1
|
|
self.agent.beta_entropy = 0.01
|
|
self.clip_gradients = 40
|
|
self.agent.middleware_type = MiddlewareTypes.FC
|
|
|
|
|
|
class Pong_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, Atari, CategoricalExploration)
|
|
self.env.level = 'PongDeterministic-v4'
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 0
|
|
self.env.reward_scaling = 1.
|
|
self.agent.apply_gradients_every_x_episodes = 1
|
|
self.agent.num_steps_between_gradient_updates = 20
|
|
self.agent.gae_lambda = 1.
|
|
self.agent.beta_entropy = 0.01
|
|
self.clip_gradients = 40.0
|
|
self.agent.middleware_type = MiddlewareTypes.FC
|
|
|
|
|
|
class Breakout_A3C(Preset):
|
|
def __init__(self):
|
|
Preset.__init__(self, ActorCritic, Atari, CategoricalExploration)
|
|
self.env.level = 'BreakoutDeterministic-v4'
|
|
self.agent.policy_gradient_rescaler = 'GAE'
|
|
self.learning_rate = 0.0001
|
|
self.num_heatup_steps = 200
|
|
self.env.reward_scaling = 1.
|
|
self.agent.apply_gradients_every_x_episodes = 1
|
|
self.agent.num_steps_between_gradient_updates = 20
|
|
self.agent.gae_lambda = 1
|
|
self.agent.beta_entropy = 0.05
|
|
self.clip_gradients = 40.0
|
|
self.agent.middleware_type = MiddlewareTypes.FC
|