1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/agents/clipped_ppo_agent.py
Roman Dobosz 1b095aeeca Cleanup imports.
Till now, most of the modules were importing all of the module objects
(variables, classes, functions, other imports) into module namespace,
which potentially could (and was) cause of unintentional use of class or
methods, which was indirect imported.

With this patch, all the star imports were substituted with top-level
module, which provides desired class or function.

Besides, all imports where sorted (where possible) in a way pep8[1]
suggests - first are imports from standard library, than goes third
party imports (like numpy, tensorflow etc) and finally coach modules.
All of those sections are separated by one empty line.

[1] https://www.python.org/dev/peps/pep-0008/#imports
2018-04-13 09:58:40 +02:00

220 lines
10 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import collections
import copy
from random import shuffle
import numpy as np
from agents import actor_critic_agent as aca
from agents import policy_optimization_agent as poa
import logger
import utils
# Clipped Proximal Policy Optimization - https://arxiv.org/abs/1707.06347
class ClippedPPOAgent(aca.ActorCriticAgent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
aca.ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
create_target_network=True)
# signals definition
self.value_loss = utils.Signal('Value Loss')
self.signals.append(self.value_loss)
self.policy_loss = utils.Signal('Policy Loss')
self.signals.append(self.policy_loss)
self.total_kl_divergence_during_training_process = 0.0
self.unclipped_grads = utils.Signal('Grads (unclipped)')
self.signals.append(self.unclipped_grads)
self.value_targets = utils.Signal('Value Targets')
self.signals.append(self.value_targets)
self.kl_divergence = utils.Signal('KL Divergence')
self.signals.append(self.kl_divergence)
def fill_advantages(self, batch):
current_states, next_states, actions, rewards, game_overs, total_return = self.extract_batch(batch)
current_state_values = self.main_network.online_network.predict(current_states)[0]
current_state_values = current_state_values.squeeze()
self.state_values.add_sample(current_state_values)
# calculate advantages
advantages = []
value_targets = []
if self.policy_gradient_rescaler == poa.PolicyGradientRescaler.A_VALUE:
advantages = total_return - current_state_values
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.GAE:
# get bootstraps
episode_start_idx = 0
advantages = np.array([])
value_targets = np.array([])
for idx, game_over in enumerate(game_overs):
if game_over:
# get advantages for the rollout
value_bootstrapping = np.zeros((1,))
rollout_state_values = np.append(current_state_values[episode_start_idx:idx+1], value_bootstrapping)
rollout_advantages, gae_based_value_targets = \
self.get_general_advantage_estimation_values(rewards[episode_start_idx:idx+1],
rollout_state_values)
episode_start_idx = idx + 1
advantages = np.append(advantages, rollout_advantages)
value_targets = np.append(value_targets, gae_based_value_targets)
else:
logger.screen.warning("WARNING: The requested policy gradient rescaler is not available")
# standardize
advantages = (advantages - np.mean(advantages)) / np.std(advantages)
for transition, advantage, value_target in zip(batch, advantages, value_targets):
transition.info['advantage'] = advantage
transition.info['gae_based_value_target'] = value_target
self.action_advantages.add_sample(advantages)
def train_network(self, dataset, epochs):
loss = []
for j in range(epochs):
loss = {
'total_loss': [],
'policy_losses': [],
'unclipped_grads': [],
'fetch_result': []
}
shuffle(dataset)
for i in range(int(len(dataset) / self.tp.batch_size)):
batch = dataset[i * self.tp.batch_size:(i + 1) * self.tp.batch_size]
current_states, _, actions, _, _, total_return = self.extract_batch(batch)
advantages = np.array([t.info['advantage'] for t in batch])
gae_based_value_targets = np.array([t.info['gae_based_value_target'] for t in batch])
if not self.tp.env_instance.discrete_controls and len(actions.shape) == 1:
actions = np.expand_dims(actions, -1)
# get old policy probabilities and distribution
result = self.main_network.target_network.predict(current_states)
old_policy_distribution = result[1:]
# calculate gradients and apply on both the local policy network and on the global policy network
fetches = [self.main_network.online_network.output_heads[1].kl_divergence,
self.main_network.online_network.output_heads[1].entropy]
total_return = np.expand_dims(total_return, -1)
value_targets = gae_based_value_targets if self.tp.agent.estimate_value_using_gae else total_return
inputs = copy.copy(current_states)
# TODO: why is this output 0 and not output 1?
inputs['output_0_0'] = actions
# TODO: does old_policy_distribution really need to be represented as a list?
# A: yes it does, in the event of discrete controls, it has just a mean
# otherwise, it has both a mean and standard deviation
for input_index, input in enumerate(old_policy_distribution):
inputs['output_0_{}'.format(input_index + 1)] = input
total_loss, policy_losses, unclipped_grads, fetch_result =\
self.main_network.online_network.accumulate_gradients(
inputs, [total_return, advantages], additional_fetches=fetches)
self.value_targets.add_sample(value_targets)
if self.tp.distributed:
self.main_network.apply_gradients_to_global_network()
self.main_network.update_online_network()
else:
self.main_network.apply_gradients_to_online_network()
self.main_network.online_network.reset_accumulated_gradients()
loss['total_loss'].append(total_loss)
loss['policy_losses'].append(policy_losses)
loss['unclipped_grads'].append(unclipped_grads)
loss['fetch_result'].append(fetch_result)
self.unclipped_grads.add_sample(unclipped_grads)
for key in loss.keys():
loss[key] = np.mean(loss[key], 0)
if self.tp.learning_rate_decay_rate != 0:
curr_learning_rate = self.main_network.online_network.get_variable_value(self.tp.learning_rate)
self.curr_learning_rate.add_sample(curr_learning_rate)
else:
curr_learning_rate = self.tp.learning_rate
# log training parameters
logger.screen.log_dict(
collections.OrderedDict([
("Surrogate loss", loss['policy_losses'][0]),
("KL divergence", loss['fetch_result'][0]),
("Entropy", loss['fetch_result'][1]),
("training epoch", j),
("learning_rate", curr_learning_rate)
]),
prefix="Policy training"
)
self.total_kl_divergence_during_training_process = loss['fetch_result'][0]
self.entropy.add_sample(loss['fetch_result'][1])
self.kl_divergence.add_sample(loss['fetch_result'][0])
return policy_losses
def post_training_commands(self):
# clean memory
self.memory.clean()
def train(self):
self.main_network.sync()
dataset = self.memory.transitions
self.fill_advantages(dataset)
# take only the requested number of steps
dataset = dataset[:self.tp.agent.num_consecutive_playing_steps]
if self.tp.distributed and self.tp.agent.share_statistics_between_workers:
self.running_observation_stats.push(np.array([t.state['observation'] for t in dataset]))
losses = self.train_network(dataset, 10)
self.value_loss.add_sample(losses[0])
self.policy_loss.add_sample(losses[1])
self.update_log() # should be done in order to update the data that has been accumulated * while not playing *
return np.append(losses[0], losses[1])
def choose_action(self, current_state, phase=utils.RunPhase.TRAIN):
if self.env.discrete_controls:
# DISCRETE
_, action_values = self.main_network.online_network.predict(self.tf_input_state(current_state))
action_values = action_values.squeeze()
if phase == utils.RunPhase.TRAIN:
action = self.exploration_policy.get_action(action_values)
else:
action = np.argmax(action_values)
action_info = {"action_probability": action_values[action]}
# self.entropy.add_sample(-np.sum(action_values * np.log(action_values)))
else:
# CONTINUOUS
_, action_values_mean, action_values_std = self.main_network.online_network.predict(self.tf_input_state(current_state))
action_values_mean = action_values_mean.squeeze()
action_values_std = action_values_std.squeeze()
if phase == utils.RunPhase.TRAIN:
action = np.squeeze(np.random.randn(1, self.action_space_size) * action_values_std + action_values_mean)
# if self.current_episode % 5 == 0 and self.current_episode_steps_counter < 5:
# print action
else:
action = action_values_mean
action_info = {"action_probability": action_values_mean}
return action, action_info