1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/rollout_worker.py
Sina Afrooze 5332013bd1 Implement frame-work agnostic rollout and training workers (#137)
* Added checkpoint state file to coach checkpointing.

* Removed TF specific code from rollout_worker, training_worker, and s3_data_store
2018-11-23 18:05:44 -08:00

92 lines
3.4 KiB
Python

"""
this rollout worker:
- restores a model from disk
- evaluates a predefined number of episodes
- contributes them to a distributed memory
- exits
"""
import time
import os
import math
from rl_coach.base_parameters import TaskParameters, DistributedCoachSynchronizationType
from rl_coach.checkpoint import CheckpointStateFile, CheckpointStateReader
from rl_coach.core_types import EnvironmentSteps, RunPhase, EnvironmentEpisodes
from rl_coach.data_stores.data_store import SyncFiles
def wait_for_checkpoint(checkpoint_dir, data_store=None, timeout=10):
"""
block until there is a checkpoint in checkpoint_dir
"""
chkpt_state_file = CheckpointStateFile(checkpoint_dir)
for i in range(timeout):
if data_store:
data_store.load_from_store()
if chkpt_state_file.read() is not None:
return
time.sleep(10)
# one last time
if chkpt_state_file.read() is not None:
return
raise ValueError((
'Waited {timeout} seconds, but checkpoint never found in '
'{checkpoint_dir}'
).format(
timeout=timeout,
checkpoint_dir=checkpoint_dir,
))
def should_stop(checkpoint_dir):
return os.path.exists(os.path.join(checkpoint_dir, SyncFiles.FINISHED.value))
def rollout_worker(graph_manager, data_store, num_workers, task_parameters):
"""
wait for first checkpoint then perform rollouts using the model
"""
checkpoint_dir = task_parameters.checkpoint_restore_dir
wait_for_checkpoint(checkpoint_dir, data_store)
graph_manager.create_graph(task_parameters)
with graph_manager.phase_context(RunPhase.TRAIN):
chkpt_state_reader = CheckpointStateReader(checkpoint_dir, checkpoint_state_optional=False)
last_checkpoint = 0
act_steps = math.ceil((graph_manager.agent_params.algorithm.num_consecutive_playing_steps.num_steps)/num_workers)
for i in range(int(graph_manager.improve_steps.num_steps/act_steps)):
if should_stop(checkpoint_dir):
break
if type(graph_manager.agent_params.algorithm.num_consecutive_playing_steps) == EnvironmentSteps:
graph_manager.act(EnvironmentSteps(num_steps=act_steps), wait_for_full_episodes=graph_manager.agent_params.algorithm.act_for_full_episodes)
elif type(graph_manager.agent_params.algorithm.num_consecutive_playing_steps) == EnvironmentEpisodes:
graph_manager.act(EnvironmentEpisodes(num_steps=act_steps))
new_checkpoint = chkpt_state_reader.get_latest()
if graph_manager.agent_params.algorithm.distributed_coach_synchronization_type == DistributedCoachSynchronizationType.SYNC:
while new_checkpoint is None or new_checkpoint.num < last_checkpoint + 1:
if should_stop(checkpoint_dir):
break
if data_store:
data_store.load_from_store()
new_checkpoint = chkpt_state_reader.get_latest()
graph_manager.restore_checkpoint()
if graph_manager.agent_params.algorithm.distributed_coach_synchronization_type == DistributedCoachSynchronizationType.ASYNC:
if new_checkpoint is not None and new_checkpoint.num > last_checkpoint:
graph_manager.restore_checkpoint()
if new_checkpoint is not None:
last_checkpoint = new_checkpoint.num