mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
Adding mxnet components to rl_coach architectures. - Supports PPO and DQN - Tested with CartPole_PPO and CarPole_DQN - Normalizing filters don't work right now (see #49) and are disabled in CartPole_PPO preset - Checkpointing is disabled for MXNet
72 lines
3.3 KiB
Python
72 lines
3.3 KiB
Python
from typing import Union
|
|
from types import ModuleType
|
|
|
|
import mxnet as mx
|
|
from mxnet.gluon import nn
|
|
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
|
from rl_coach.architectures.mxnet_components.layers import convert_layer
|
|
from rl_coach.base_parameters import EmbedderScheme
|
|
|
|
nd_sym_type = Union[mx.nd.NDArray, mx.sym.Symbol]
|
|
|
|
|
|
class InputEmbedder(nn.HybridBlock):
|
|
def __init__(self, params: InputEmbedderParameters):
|
|
"""
|
|
An input embedder is the first part of the network, which takes the input from the state and produces a vector
|
|
embedding by passing it through a neural network. The embedder will mostly be input type dependent, and there
|
|
can be multiple embedders in a single network.
|
|
|
|
:param params: parameters object containing input_clipping, input_rescaling, batchnorm, activation_function
|
|
and dropout properties.
|
|
"""
|
|
super(InputEmbedder, self).__init__()
|
|
self.embedder_name = params.name
|
|
self.input_clipping = params.input_clipping
|
|
self.scheme = params.scheme
|
|
|
|
with self.name_scope():
|
|
self.net = nn.HybridSequential()
|
|
if isinstance(self.scheme, EmbedderScheme):
|
|
blocks = self.schemes[self.scheme]
|
|
else:
|
|
# if scheme is specified directly, convert to MX layer if it's not a callable object
|
|
# NOTE: if layer object is callable, it must return a gluon block when invoked
|
|
blocks = [convert_layer(l) for l in self.scheme]
|
|
for block in blocks:
|
|
self.net.add(block())
|
|
if params.batchnorm:
|
|
self.net.add(nn.BatchNorm())
|
|
if params.activation_function:
|
|
self.net.add(nn.Activation(params.activation_function))
|
|
if params.dropout:
|
|
self.net.add(nn.Dropout(rate=params.dropout))
|
|
|
|
@property
|
|
def schemes(self) -> dict:
|
|
"""
|
|
Schemes are the pre-defined network architectures of various depths and complexities that can be used for the
|
|
InputEmbedder. Should be implemented in child classes, and are used to create Block when InputEmbedder is
|
|
initialised.
|
|
|
|
:return: dictionary of schemes, with key of type EmbedderScheme enum and value being list of mxnet.gluon.Block.
|
|
"""
|
|
raise NotImplementedError("Inheriting embedder must define schemes matching its allowed default "
|
|
"configurations.")
|
|
|
|
def hybrid_forward(self, F: ModuleType, x: nd_sym_type, *args, **kwargs) -> nd_sym_type:
|
|
"""
|
|
Used for forward pass through embedder network.
|
|
|
|
:param F: backend api, either `mxnet.nd` or `mxnet.sym` (if block has been hybridized).
|
|
:param x: environment state, where first dimension is batch_size, then dimensions are data type dependent.
|
|
:return: embedding of environment state, where shape is (batch_size, channels).
|
|
"""
|
|
# `input_rescaling` and `input_offset` set on inheriting embedder
|
|
x = x / self.input_rescaling
|
|
x = x - self.input_offset
|
|
if self.input_clipping is not None:
|
|
x.clip(a_min=self.input_clipping[0], a_max=self.input_clipping[1])
|
|
x = self.net(x)
|
|
return x.flatten()
|