1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 11:40:18 +01:00
Files
coach/rl_coach/architectures/mxnet_components/embedders/vector_embedder.py
Sina Afrooze 5fadb9c18e Adding mxnet components to rl_coach/architectures (#60)
Adding mxnet components to rl_coach architectures.

- Supports PPO and DQN
- Tested with CartPole_PPO and CarPole_DQN
- Normalizing filters don't work right now (see #49) and are disabled in CartPole_PPO preset
- Checkpointing is disabled for MXNet
2018-11-07 17:07:15 +02:00

72 lines
2.7 KiB
Python

from typing import Union
from types import ModuleType
import mxnet as mx
from mxnet import nd, sym
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.mxnet_components.embedders.embedder import InputEmbedder
from rl_coach.architectures.mxnet_components.layers import Dense
from rl_coach.base_parameters import EmbedderScheme
nd_sym_type = Union[mx.nd.NDArray, mx.sym.Symbol]
class VectorEmbedder(InputEmbedder):
def __init__(self, params: InputEmbedderParameters):
"""
An vector embedder is an input embedder that takes an vector input from the state and produces a vector
embedding by passing it through a neural network.
:param params: parameters object containing input_clipping, input_rescaling, batchnorm, activation_function
and dropout properties.
"""
super(VectorEmbedder, self).__init__(params)
self.input_rescaling = params.input_rescaling['vector']
self.input_offset = params.input_offset['vector']
@property
def schemes(self):
"""
Schemes are the pre-defined network architectures of various depths and complexities that can be used. Are used
to create Block when VectorEmbedder is initialised.
:return: dictionary of schemes, with key of type EmbedderScheme enum and value being list of mxnet.gluon.Block.
"""
return {
EmbedderScheme.Empty:
[],
EmbedderScheme.Shallow:
[
Dense(units=128)
],
# Use for DQN
EmbedderScheme.Medium:
[
Dense(units=256)
],
# Use for Carla
EmbedderScheme.Deep:
[
Dense(units=128),
Dense(units=128),
Dense(units=128)
]
}
def hybrid_forward(self, F: ModuleType, x: nd_sym_type, *args, **kwargs) -> nd_sym_type:
"""
Used for forward pass through embedder network.
:param F: backend api, either `nd` or `sym` (if block has been hybridized).
:type F: nd or sym
:param x: vector representing environment state, of shape (batch_size, in_channels).
:return: embedding of environment state, of shape (batch_size, channels).
"""
if isinstance(x, nd.NDArray) and len(x.shape) != 2 and self.scheme != EmbedderScheme.Empty:
raise ValueError("Vector embedders expect the input size to have 2 dimensions. The given size is: {}"
.format(x.shape))
return super(VectorEmbedder, self).hybrid_forward(F, x, *args, **kwargs)