1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/debug_utils.py
2018-08-27 10:54:11 +03:00

79 lines
2.6 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import math
import matplotlib.pyplot as plt
import numpy as np
from rl_coach.filters.observation.observation_stacking_filter import LazyStack
def show_observation_stack(stack, channels_last=True, show=True, force_num_rows=None, row_to_update=0):
if isinstance(stack, LazyStack):
stack = np.array(stack)
if isinstance(stack, list): # is list
stack_size = len(stack)
elif len(stack.shape) == 3:
stack_size = stack.shape[0] # is numpy array
elif len(stack.shape) == 4:
stack_size = stack.shape[1] # ignore batch dimension
stack = stack[0]
else:
raise ValueError("The observation stack must be a list, a numpy array or a LazyStack object")
if channels_last:
stack = np.transpose(stack, (2, 0, 1))
stack_size = stack.shape[0]
max_cols = 10
if force_num_rows:
rows = force_num_rows
else:
rows = math.ceil(stack_size / max_cols)
cols = max_cols if stack_size > max_cols else stack_size
for i in range(stack_size):
plt.subplot(rows, cols, row_to_update * cols + i + 1)
plt.imshow(stack[i], cmap='gray')
if show:
plt.show()
def show_diff_between_two_observations(observation1, observation2):
plt.imshow(observation1 - observation2, cmap='gray')
plt.show()
def plot_grayscale_observation(observation):
plt.imshow(observation, cmap='gray')
plt.show()
def plot_episode_states(episode_transitions, state_variable: str='state', observation_index_in_stack: int=0):
observations = []
for transition in episode_transitions:
observations.append(np.array(getattr(transition, state_variable)['observation'])[..., observation_index_in_stack])
show_observation_stack(observations, False)
def plot_list_of_observation_stacks(observation_stacks):
for idx, stack in enumerate(observation_stacks):
show_observation_stack(stack['observation'], True, False,
force_num_rows=len(observation_stacks), row_to_update=idx)
plt.show()