mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
266 lines
9.6 KiB
Python
266 lines
9.6 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import numpy as np
|
|
from utils import *
|
|
from configurations import Preset
|
|
from renderer import Renderer
|
|
import operator
|
|
import time
|
|
|
|
|
|
class EnvironmentWrapper(object):
|
|
def __init__(self, tuning_parameters):
|
|
"""
|
|
:param tuning_parameters:
|
|
:type tuning_parameters: Preset
|
|
"""
|
|
# env initialization
|
|
self.game = []
|
|
self.actions = {}
|
|
self.state = []
|
|
self.reward = 0
|
|
self.done = False
|
|
self.default_action = 0
|
|
self.last_action_idx = 0
|
|
self.episode_idx = 0
|
|
self.last_episode_time = time.time()
|
|
self.info = []
|
|
self.action_space_low = 0
|
|
self.action_space_high = 0
|
|
self.action_space_abs_range = 0
|
|
self.actions_description = {}
|
|
self.discrete_controls = True
|
|
self.action_space_size = 0
|
|
self.key_to_action = {}
|
|
self.width = 1
|
|
self.height = 1
|
|
self.is_state_type_image = True
|
|
self.measurements_size = 0
|
|
self.phase = RunPhase.TRAIN
|
|
self.tp = tuning_parameters
|
|
self.record_video_every = self.tp.visualization.record_video_every
|
|
self.env_id = self.tp.env.level
|
|
self.video_path = self.tp.visualization.video_path
|
|
self.is_rendered = self.tp.visualization.render
|
|
self.seed = self.tp.seed
|
|
self.frame_skip = self.tp.env.frame_skip
|
|
self.human_control = self.tp.env.human_control
|
|
self.wait_for_explicit_human_action = False
|
|
self.is_rendered = self.is_rendered or self.human_control
|
|
self.game_is_open = True
|
|
self.renderer = Renderer()
|
|
|
|
@property
|
|
def measurements(self):
|
|
assert False
|
|
|
|
@measurements.setter
|
|
def measurements(self, value):
|
|
assert False
|
|
|
|
@property
|
|
def observation(self):
|
|
assert False
|
|
|
|
@observation.setter
|
|
def observation(self, value):
|
|
assert False
|
|
|
|
def _idx_to_action(self, action_idx):
|
|
"""
|
|
Convert an action index to one of the environment available actions.
|
|
For example, if the available actions are 4,5,6 then this function will map 0->4, 1->5, 2->6
|
|
:param action_idx: an action index between 0 and self.action_space_size - 1
|
|
:return: the action corresponding to the requested index
|
|
"""
|
|
return self.actions[action_idx]
|
|
|
|
def _action_to_idx(self, action):
|
|
"""
|
|
Convert an environment action to one of the available actions of the wrapper.
|
|
For example, if the available actions are 4,5,6 then this function will map 4->0, 5->1, 6->2
|
|
:param action: the environment action
|
|
:return: an action index between 0 and self.action_space_size - 1, or -1 if the action does not exist
|
|
"""
|
|
for key, val in self.actions.items():
|
|
if val == action:
|
|
return key
|
|
return -1
|
|
|
|
def get_action_from_user(self):
|
|
"""
|
|
Get an action from the user keyboard
|
|
:return: action index
|
|
"""
|
|
if self.wait_for_explicit_human_action:
|
|
while len(self.renderer.pressed_keys) == 0:
|
|
self.renderer.get_events()
|
|
|
|
if self.key_to_action == {}:
|
|
# the keys are the numbers on the keyboard corresponding to the action index
|
|
if len(self.renderer.pressed_keys) > 0:
|
|
action_idx = self.renderer.pressed_keys[0] - ord("1")
|
|
if 0 <= action_idx < self.action_space_size:
|
|
return action_idx
|
|
else:
|
|
# the keys are mapped through the environment to more intuitive keyboard keys
|
|
# key = tuple(self.renderer.pressed_keys)
|
|
# for key in self.renderer.pressed_keys:
|
|
for env_keys in self.key_to_action.keys():
|
|
if set(env_keys) == set(self.renderer.pressed_keys):
|
|
return self.key_to_action[env_keys]
|
|
|
|
# return the default action 0 so that the environment will continue running
|
|
return self.default_action
|
|
|
|
def step(self, action_idx):
|
|
"""
|
|
Perform a single step on the environment using the given action
|
|
:param action_idx: the action to perform on the environment
|
|
:return: A dictionary containing the state, reward, done flag and action
|
|
"""
|
|
self.last_action_idx = action_idx
|
|
|
|
self._take_action(action_idx)
|
|
|
|
self._update_state()
|
|
|
|
if self.is_rendered:
|
|
self.render()
|
|
|
|
self.state = self._preprocess_state(self.state)
|
|
|
|
return {'state': self.state,
|
|
'reward': self.reward,
|
|
'done': self.done,
|
|
'action': self.last_action_idx,
|
|
'info': self.info}
|
|
|
|
def render(self):
|
|
"""
|
|
Call the environment function for rendering to the screen
|
|
"""
|
|
self.renderer.render_image(self.get_rendered_image())
|
|
|
|
def reset(self, force_environment_reset=False):
|
|
"""
|
|
Reset the environment and all the variable of the wrapper
|
|
:param force_environment_reset: forces environment reset even when the game did not end
|
|
:return: A dictionary containing the state, reward, done flag and action
|
|
"""
|
|
self._restart_environment_episode(force_environment_reset)
|
|
self.last_episode_time = time.time()
|
|
self.done = False
|
|
self.episode_idx += 1
|
|
self.reward = 0.0
|
|
self.last_action_idx = 0
|
|
self._update_state()
|
|
|
|
# render before the preprocessing of the state, so that the image will be in its original quality
|
|
if self.is_rendered:
|
|
self.render()
|
|
|
|
# TODO BUG: if the environment has not been reset, _preprocessed_state will be running on an already preprocessed state
|
|
# TODO: see also _update_state above
|
|
self.state = self._preprocess_state(self.state)
|
|
|
|
return {'state': self.state,
|
|
'reward': self.reward,
|
|
'done': self.done,
|
|
'action': self.last_action_idx,
|
|
'info': self.info}
|
|
|
|
def get_random_action(self):
|
|
"""
|
|
Returns an action picked uniformly from the available actions
|
|
:return: a numpy array with a random action
|
|
"""
|
|
if self.discrete_controls:
|
|
return np.random.choice(self.action_space_size)
|
|
else:
|
|
return np.random.uniform(self.action_space_low, self.action_space_high)
|
|
|
|
def change_phase(self, phase):
|
|
"""
|
|
Change the current phase of the run.
|
|
This is useful when different behavior is expected when testing and training
|
|
:param phase: The running phase of the algorithm
|
|
:type phase: RunPhase
|
|
"""
|
|
self.phase = phase
|
|
|
|
def get_available_keys(self):
|
|
"""
|
|
Return a list of tuples mapping between action names and the keyboard key that triggers them
|
|
:return: a list of tuples mapping between action names and the keyboard key that triggers them
|
|
"""
|
|
available_keys = []
|
|
if self.key_to_action != {}:
|
|
for key, idx in sorted(self.key_to_action.items(), key=operator.itemgetter(1)):
|
|
if key != ():
|
|
key_names = [self.renderer.get_key_names([k])[0] for k in key]
|
|
available_keys.append((self.actions_description[idx], ' + '.join(key_names)))
|
|
elif self.discrete_controls:
|
|
for action in range(self.action_space_size):
|
|
available_keys.append(("Action {}".format(action + 1), action + 1))
|
|
return available_keys
|
|
|
|
# The following functions define the interaction with the environment.
|
|
# Any new environment that inherits the EnvironmentWrapper class should use these signatures.
|
|
# Some of these functions are optional - please read their description for more details.
|
|
|
|
def _take_action(self, action_idx):
|
|
"""
|
|
An environment dependent function that sends an action to the simulator.
|
|
:param action_idx: the action to perform on the environment
|
|
:return: None
|
|
"""
|
|
pass
|
|
|
|
def _preprocess_state(self, state):
|
|
"""
|
|
Do initial state preprocessing such as cropping, rgb2gray, rescale etc.
|
|
Implementing this function is optional.
|
|
:param state: a raw state from the environment
|
|
:return: the preprocessed state
|
|
"""
|
|
return state
|
|
|
|
def _update_state(self):
|
|
"""
|
|
Updates the state from the environment.
|
|
Should update self.state, self.reward, self.done and self.info
|
|
:return: None
|
|
"""
|
|
pass
|
|
|
|
def _restart_environment_episode(self, force_environment_reset=False):
|
|
"""
|
|
:param force_environment_reset: Force the environment to reset even if the episode is not done yet.
|
|
:return:
|
|
"""
|
|
pass
|
|
|
|
def get_rendered_image(self):
|
|
"""
|
|
Return a numpy array containing the image that will be rendered to the screen.
|
|
This can be different from the state. For example, mujoco's state is a measurements vector.
|
|
:return: numpy array containing the image that will be rendered to the screen
|
|
"""
|
|
# TODO: probably needs revisiting
|
|
return self.state
|