mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
194 lines
8.7 KiB
Python
194 lines
8.7 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import copy
|
|
from typing import Union
|
|
from collections import OrderedDict
|
|
|
|
import numpy as np
|
|
from rl_coach.agents.actor_critic_agent import ActorCriticAgent
|
|
from rl_coach.agents.agent import Agent
|
|
from rl_coach.architectures.tensorflow_components.heads.v_head import VHeadParameters
|
|
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
|
|
from rl_coach.base_parameters import NetworkParameters, AlgorithmParameters, \
|
|
AgentParameters, InputEmbedderParameters, EmbedderScheme
|
|
from rl_coach.exploration_policies.ou_process import OUProcessParameters
|
|
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
|
|
from rl_coach.spaces import BoxActionSpace, GoalsSpace
|
|
|
|
from rl_coach.architectures.tensorflow_components.heads.ddpg_actor_head import DDPGActorHeadParameters
|
|
from rl_coach.core_types import ActionInfo, EnvironmentSteps
|
|
|
|
|
|
class DDPGCriticNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters(batchnorm=True),
|
|
'action': InputEmbedderParameters(scheme=EmbedderScheme.Shallow)}
|
|
self.middleware_parameters = FCMiddlewareParameters()
|
|
self.heads_parameters = [VHeadParameters()]
|
|
self.loss_weights = [1.0]
|
|
self.rescale_gradient_from_head_by_factor = [1]
|
|
self.optimizer_type = 'Adam'
|
|
self.batch_size = 64
|
|
self.async_training = False
|
|
self.learning_rate = 0.001
|
|
self.create_target_network = True
|
|
self.shared_optimizer = True
|
|
self.scale_down_gradients_by_number_of_workers_for_sync_training = False
|
|
|
|
|
|
class DDPGActorNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters(batchnorm=True)}
|
|
self.middleware_parameters = FCMiddlewareParameters(batchnorm=True)
|
|
self.heads_parameters = [DDPGActorHeadParameters()]
|
|
self.loss_weights = [1.0]
|
|
self.rescale_gradient_from_head_by_factor = [1]
|
|
self.optimizer_type = 'Adam'
|
|
self.batch_size = 64
|
|
self.async_training = False
|
|
self.learning_rate = 0.0001
|
|
self.create_target_network = True
|
|
self.shared_optimizer = True
|
|
self.scale_down_gradients_by_number_of_workers_for_sync_training = False
|
|
|
|
|
|
class DDPGAlgorithmParameters(AlgorithmParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(1)
|
|
self.rate_for_copying_weights_to_target = 0.001
|
|
self.num_consecutive_playing_steps = EnvironmentSteps(1)
|
|
self.use_target_network_for_evaluation = False
|
|
self.action_penalty = 0
|
|
self.clip_critic_targets = None # expected to be a tuple of the form (min_clip_value, max_clip_value) or None
|
|
self.use_non_zero_discount_for_terminal_states = False
|
|
|
|
|
|
class DDPGAgentParameters(AgentParameters):
|
|
def __init__(self):
|
|
super().__init__(algorithm=DDPGAlgorithmParameters(),
|
|
exploration=OUProcessParameters(),
|
|
memory=EpisodicExperienceReplayParameters(),
|
|
networks=OrderedDict([("actor", DDPGActorNetworkParameters()),
|
|
("critic", DDPGCriticNetworkParameters())]))
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.ddpg_agent:DDPGAgent'
|
|
|
|
|
|
# Deep Deterministic Policy Gradients Network - https://arxiv.org/pdf/1509.02971.pdf
|
|
class DDPGAgent(ActorCriticAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
|
|
self.q_values = self.register_signal("Q")
|
|
self.TD_targets_signal = self.register_signal("TD targets")
|
|
self.action_signal = self.register_signal("actions")
|
|
|
|
def learn_from_batch(self, batch):
|
|
actor = self.networks['actor']
|
|
critic = self.networks['critic']
|
|
|
|
actor_keys = self.ap.network_wrappers['actor'].input_embedders_parameters.keys()
|
|
critic_keys = self.ap.network_wrappers['critic'].input_embedders_parameters.keys()
|
|
|
|
# TD error = r + discount*max(q_st_plus_1) - q_st
|
|
next_actions, actions_mean = actor.parallel_prediction([
|
|
(actor.target_network, batch.next_states(actor_keys)),
|
|
(actor.online_network, batch.states(actor_keys))
|
|
])
|
|
|
|
critic_inputs = copy.copy(batch.next_states(critic_keys))
|
|
critic_inputs['action'] = next_actions
|
|
q_st_plus_1 = critic.target_network.predict(critic_inputs)
|
|
|
|
# calculate the bootstrapped TD targets while discounting terminal states according to
|
|
# use_non_zero_discount_for_terminal_states
|
|
if self.ap.algorithm.use_non_zero_discount_for_terminal_states:
|
|
TD_targets = batch.rewards(expand_dims=True) + self.ap.algorithm.discount * q_st_plus_1
|
|
else:
|
|
TD_targets = batch.rewards(expand_dims=True) + \
|
|
(1.0 - batch.game_overs(expand_dims=True)) * self.ap.algorithm.discount * q_st_plus_1
|
|
|
|
# clip the TD targets to prevent overestimation errors
|
|
if self.ap.algorithm.clip_critic_targets:
|
|
TD_targets = np.clip(TD_targets, *self.ap.algorithm.clip_critic_targets)
|
|
|
|
self.TD_targets_signal.add_sample(TD_targets)
|
|
|
|
# get the gradients of the critic output with respect to the action
|
|
critic_inputs = copy.copy(batch.states(critic_keys))
|
|
critic_inputs['action'] = actions_mean
|
|
action_gradients = critic.online_network.predict(critic_inputs,
|
|
outputs=critic.online_network.gradients_wrt_inputs[0]['action'])
|
|
|
|
# train the critic
|
|
critic_inputs = copy.copy(batch.states(critic_keys))
|
|
critic_inputs['action'] = batch.actions(len(batch.actions().shape) == 1)
|
|
result = critic.train_and_sync_networks(critic_inputs, TD_targets)
|
|
total_loss, losses, unclipped_grads = result[:3]
|
|
|
|
# apply the gradients from the critic to the actor
|
|
initial_feed_dict = {actor.online_network.gradients_weights_ph[0]: -action_gradients}
|
|
gradients = actor.online_network.predict(batch.states(actor_keys),
|
|
outputs=actor.online_network.weighted_gradients[0],
|
|
initial_feed_dict=initial_feed_dict)
|
|
|
|
if actor.has_global:
|
|
actor.apply_gradients_to_global_network(gradients)
|
|
actor.update_online_network()
|
|
else:
|
|
actor.apply_gradients_to_online_network(gradients)
|
|
|
|
return total_loss, losses, unclipped_grads
|
|
|
|
def train(self):
|
|
return Agent.train(self)
|
|
|
|
def choose_action(self, curr_state):
|
|
if not (isinstance(self.spaces.action, BoxActionSpace) or isinstance(self.spaces.action, GoalsSpace)):
|
|
raise ValueError("DDPG works only for continuous control problems")
|
|
# convert to batch so we can run it through the network
|
|
tf_input_state = self.prepare_batch_for_inference(curr_state, 'actor')
|
|
if self.ap.algorithm.use_target_network_for_evaluation:
|
|
actor_network = self.networks['actor'].target_network
|
|
else:
|
|
actor_network = self.networks['actor'].online_network
|
|
|
|
action_values = actor_network.predict(tf_input_state).squeeze()
|
|
|
|
action = self.exploration_policy.get_action(action_values)
|
|
|
|
self.action_signal.add_sample(action)
|
|
|
|
# get q value
|
|
tf_input_state = self.prepare_batch_for_inference(curr_state, 'critic')
|
|
action_batch = np.expand_dims(action, 0)
|
|
if type(action) != np.ndarray:
|
|
action_batch = np.array([[action]])
|
|
tf_input_state['action'] = action_batch
|
|
q_value = self.networks['critic'].online_network.predict(tf_input_state)[0]
|
|
self.q_values.add_sample(q_value)
|
|
|
|
action_info = ActionInfo(action=action,
|
|
action_value=q_value)
|
|
|
|
return action_info
|