1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/agents/clipped_ppo_agent.py

293 lines
14 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from collections import OrderedDict
from random import shuffle
from typing import Union
import numpy as np
from rl_coach.agents.actor_critic_agent import ActorCriticAgent
from rl_coach.agents.policy_optimization_agent import PolicyGradientRescaler
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import PPOHeadParameters, VHeadParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, \
AgentParameters
from rl_coach.core_types import EnvironmentSteps, Batch, EnvResponse, StateType
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
from rl_coach.exploration_policies.categorical import CategoricalParameters
from rl_coach.logger import screen
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
from rl_coach.schedules import ConstantSchedule
from rl_coach.spaces import DiscreteActionSpace, BoxActionSpace
class ClippedPPONetworkParameters(NetworkParameters):
def __init__(self):
super().__init__()
self.input_embedders_parameters = {'observation': InputEmbedderParameters(activation_function='tanh')}
self.middleware_parameters = FCMiddlewareParameters(activation_function='tanh')
self.heads_parameters = [VHeadParameters(), PPOHeadParameters()]
self.batch_size = 64
self.optimizer_type = 'Adam'
self.clip_gradients = None
self.use_separate_networks_per_head = True
self.async_training = False
self.l2_regularization = 0
# The target network is used in order to freeze the old policy, while making updates to the new one
# in train_network()
self.create_target_network = True
self.shared_optimizer = True
self.scale_down_gradients_by_number_of_workers_for_sync_training = True
class ClippedPPOAlgorithmParameters(AlgorithmParameters):
def __init__(self):
super().__init__()
self.num_episodes_in_experience_replay = 1000000
self.policy_gradient_rescaler = PolicyGradientRescaler.GAE
self.gae_lambda = 0.95
self.use_kl_regularization = False
self.clip_likelihood_ratio_using_epsilon = 0.2
self.estimate_state_value_using_gae = True
self.step_until_collecting_full_episodes = True
self.beta_entropy = 0.01 # should be 0 for mujoco
self.num_consecutive_playing_steps = EnvironmentSteps(2048)
self.optimization_epochs = 10
self.normalization_stats = None
self.clipping_decay_schedule = ConstantSchedule(1)
class ClippedPPOAgentParameters(AgentParameters):
def __init__(self):
super().__init__(algorithm=ClippedPPOAlgorithmParameters(),
exploration={DiscreteActionSpace: CategoricalParameters(),
BoxActionSpace: AdditiveNoiseParameters()},
memory=EpisodicExperienceReplayParameters(),
networks={"main": ClippedPPONetworkParameters()})
@property
def path(self):
return 'rl_coach.agents.clipped_ppo_agent:ClippedPPOAgent'
# Clipped Proximal Policy Optimization - https://arxiv.org/abs/1707.06347
class ClippedPPOAgent(ActorCriticAgent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)
# signals definition
self.value_loss = self.register_signal('Value Loss')
self.policy_loss = self.register_signal('Policy Loss')
self.total_kl_divergence_during_training_process = 0.0
self.unclipped_grads = self.register_signal('Grads (unclipped)')
self.value_targets = self.register_signal('Value Targets')
self.kl_divergence = self.register_signal('KL Divergence')
self.likelihood_ratio = self.register_signal('Likelihood Ratio')
self.clipped_likelihood_ratio = self.register_signal('Clipped Likelihood Ratio')
def set_session(self, sess):
super().set_session(sess)
if self.ap.algorithm.normalization_stats is not None:
self.ap.algorithm.normalization_stats.set_session(sess)
def fill_advantages(self, batch):
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
current_state_values = self.networks['main'].online_network.predict(batch.states(network_keys))[0]
current_state_values = current_state_values.squeeze()
self.state_values.add_sample(current_state_values)
# calculate advantages
advantages = []
value_targets = []
if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE:
advantages = batch.total_returns() - current_state_values
elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE:
# get bootstraps
episode_start_idx = 0
advantages = np.array([])
value_targets = np.array([])
for idx, game_over in enumerate(batch.game_overs()):
if game_over:
# get advantages for the rollout
value_bootstrapping = np.zeros((1,))
rollout_state_values = np.append(current_state_values[episode_start_idx:idx+1], value_bootstrapping)
rollout_advantages, gae_based_value_targets = \
self.get_general_advantage_estimation_values(batch.rewards()[episode_start_idx:idx+1],
rollout_state_values)
episode_start_idx = idx + 1
advantages = np.append(advantages, rollout_advantages)
value_targets = np.append(value_targets, gae_based_value_targets)
else:
screen.warning("WARNING: The requested policy gradient rescaler is not available")
# standardize
advantages = (advantages - np.mean(advantages)) / np.std(advantages)
for transition, advantage, value_target in zip(batch.transitions, advantages, value_targets):
transition.info['advantage'] = advantage
transition.info['gae_based_value_target'] = value_target
self.action_advantages.add_sample(advantages)
def train_network(self, batch, epochs):
batch_results = []
for j in range(epochs):
batch.shuffle()
batch_results = {
'total_loss': [],
'losses': [],
'unclipped_grads': [],
'kl_divergence': [],
'entropy': []
}
fetches = [self.networks['main'].online_network.output_heads[1].kl_divergence,
self.networks['main'].online_network.output_heads[1].entropy,
self.networks['main'].online_network.output_heads[1].likelihood_ratio,
self.networks['main'].online_network.output_heads[1].clipped_likelihood_ratio]
for i in range(int(batch.size / self.ap.network_wrappers['main'].batch_size)):
start = i * self.ap.network_wrappers['main'].batch_size
end = (i + 1) * self.ap.network_wrappers['main'].batch_size
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
actions = batch.actions()[start:end]
gae_based_value_targets = batch.info('gae_based_value_target')[start:end]
if not isinstance(self.spaces.action, DiscreteActionSpace) and len(actions.shape) == 1:
actions = np.expand_dims(actions, -1)
# get old policy probabilities and distribution
# TODO-perf - the target network ("old_policy") is not changing. this can be calculated once for all epochs.
# the shuffling being done, should only be performed on the indices.
result = self.networks['main'].target_network.predict({k: v[start:end] for k, v in batch.states(network_keys).items()})
old_policy_distribution = result[1:]
# calculate gradients and apply on both the local policy network and on the global policy network
if self.ap.algorithm.estimate_state_value_using_gae:
value_targets = np.expand_dims(gae_based_value_targets, -1)
else:
value_targets = batch.total_returns(expand_dims=True)[start:end]
inputs = copy.copy({k: v[start:end] for k, v in batch.states(network_keys).items()})
inputs['output_1_0'] = actions
# The old_policy_distribution needs to be represented as a list, because in the event of
# discrete controls, it has just a mean. otherwise, it has both a mean and standard deviation
for input_index, input in enumerate(old_policy_distribution):
inputs['output_1_{}'.format(input_index + 1)] = input
# update the clipping decay schedule value
inputs['output_1_{}'.format(len(old_policy_distribution)+1)] = \
self.ap.algorithm.clipping_decay_schedule.current_value
total_loss, losses, unclipped_grads, fetch_result = \
self.networks['main'].train_and_sync_networks(
inputs, [value_targets, batch.info('advantage')[start:end]], additional_fetches=fetches
)
batch_results['total_loss'].append(total_loss)
batch_results['losses'].append(losses)
batch_results['unclipped_grads'].append(unclipped_grads)
batch_results['kl_divergence'].append(fetch_result[0])
batch_results['entropy'].append(fetch_result[1])
self.unclipped_grads.add_sample(unclipped_grads)
self.value_targets.add_sample(value_targets)
self.likelihood_ratio.add_sample(fetch_result[2])
self.clipped_likelihood_ratio.add_sample(fetch_result[3])
for key in batch_results.keys():
batch_results[key] = np.mean(batch_results[key], 0)
self.value_loss.add_sample(batch_results['losses'][0])
self.policy_loss.add_sample(batch_results['losses'][1])
self.loss.add_sample(batch_results['total_loss'])
if self.ap.network_wrappers['main'].learning_rate_decay_rate != 0:
curr_learning_rate = self.networks['main'].online_network.get_variable_value(
self.networks['main'].online_network.adaptive_learning_rate_scheme)
self.curr_learning_rate.add_sample(curr_learning_rate)
else:
curr_learning_rate = self.ap.network_wrappers['main'].learning_rate
# log training parameters
screen.log_dict(
OrderedDict([
("Surrogate loss", batch_results['losses'][1]),
("KL divergence", batch_results['kl_divergence']),
("Entropy", batch_results['entropy']),
("training epoch", j),
("learning_rate", curr_learning_rate)
]),
prefix="Policy training"
)
self.total_kl_divergence_during_training_process = batch_results['kl_divergence']
self.entropy.add_sample(batch_results['entropy'])
self.kl_divergence.add_sample(batch_results['kl_divergence'])
return batch_results['losses']
def post_training_commands(self):
# clean memory
self.call_memory('clean')
def _should_train_helper(self, wait_for_full_episode=True):
return super()._should_train_helper(True)
def train(self):
if self._should_train(wait_for_full_episode=True):
for network in self.networks.values():
network.set_is_training(True)
dataset = self.memory.transitions
dataset = self.pre_network_filter.filter(dataset, deep_copy=False)
batch = Batch(dataset)
for training_step in range(self.ap.algorithm.num_consecutive_training_steps):
self.networks['main'].sync()
self.fill_advantages(batch)
# take only the requested number of steps
if isinstance(self.ap.algorithm.num_consecutive_playing_steps, EnvironmentSteps):
dataset = dataset[:self.ap.algorithm.num_consecutive_playing_steps.num_steps]
shuffle(dataset)
batch = Batch(dataset)
self.train_network(batch, self.ap.algorithm.optimization_epochs)
for network in self.networks.values():
network.set_is_training(False)
self.post_training_commands()
self.training_iteration += 1
# should be done in order to update the data that has been accumulated * while not playing *
self.update_log()
return None
def run_pre_network_filter_for_inference(self, state: StateType):
dummy_env_response = EnvResponse(next_state=state, reward=0, game_over=False)
return self.pre_network_filter.filter(dummy_env_response, update_internal_state=False)[0].next_state
def choose_action(self, curr_state):
self.ap.algorithm.clipping_decay_schedule.step()
return super().choose_action(curr_state)