1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/agents/pal_agent.py
Gal Leibovich 1d4c3455e7 coach v0.8.0
2017-10-19 13:10:15 +03:00

66 lines
3.1 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agents.value_optimization_agent import *
# Persistent Advantage Learning - https://arxiv.org/pdf/1512.04860.pdf
class PALAgent(ValueOptimizationAgent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
self.alpha = tuning_parameters.agent.pal_alpha
self.persistent = tuning_parameters.agent.persistent_advantage_learning
self.monte_carlo_mixing_rate = tuning_parameters.agent.monte_carlo_mixing_rate
def learn_from_batch(self, batch):
current_states, next_states, actions, rewards, game_overs, total_return = self.extract_batch(batch)
selected_actions = np.argmax(self.main_network.online_network.predict(next_states), 1)
# next state values
q_st_plus_1_target = self.main_network.target_network.predict(next_states)
v_st_plus_1_target = np.max(q_st_plus_1_target, 1)
# current state values according to online network
q_st_online = self.main_network.online_network.predict(current_states)
# current state values according to target network
q_st_target = self.main_network.target_network.predict(current_states)
v_st_target = np.max(q_st_target, 1)
# calculate TD error
TD_targets = np.copy(q_st_online)
for i in range(self.tp.batch_size):
TD_targets[i, actions[i]] = rewards[i] + (1.0 - game_overs[i]) * self.tp.agent.discount * \
q_st_plus_1_target[i][selected_actions[i]]
advantage_learning_update = v_st_target[i] - q_st_target[i, actions[i]]
next_advantage_learning_update = v_st_plus_1_target[i] - q_st_plus_1_target[i, selected_actions[i]]
# Persistent Advantage Learning or Regular Advantage Learning
if self.persistent:
TD_targets[i, actions[i]] -= self.alpha * min(advantage_learning_update, next_advantage_learning_update)
else:
TD_targets[i, actions[i]] -= self.alpha * advantage_learning_update
# mixing monte carlo updates
monte_carlo_target = total_return[i]
TD_targets[i, actions[i]] = (1 - self.monte_carlo_mixing_rate) * TD_targets[i, actions[i]] \
+ self.monte_carlo_mixing_rate * monte_carlo_target
result = self.main_network.train_and_sync_networks(current_states, TD_targets)
total_loss = result[0]
return total_loss