mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
978 lines
36 KiB
Python
978 lines
36 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
"""
|
|
To run Coach Dashboard, run the following command:
|
|
python3 dashboard.py
|
|
"""
|
|
|
|
from utils import *
|
|
import os
|
|
import datetime
|
|
|
|
import sys
|
|
import wx
|
|
import random
|
|
import pandas as pd
|
|
from pandas.io.common import EmptyDataError
|
|
import numpy as np
|
|
import colorsys
|
|
from bokeh.palettes import Dark2
|
|
from bokeh.layouts import row, column, widgetbox, Spacer
|
|
from bokeh.models import ColumnDataSource, Range1d, LinearAxis, HoverTool, WheelZoomTool, PanTool, Legend
|
|
from bokeh.models.widgets import RadioButtonGroup, MultiSelect, Button, Select, Slider, Div, CheckboxGroup
|
|
from bokeh.models.glyphs import Patch
|
|
from bokeh.plotting import figure, show, curdoc
|
|
from utils import force_list
|
|
from utils import squeeze_list
|
|
from itertools import cycle
|
|
from os import listdir
|
|
from os.path import isfile, join, isdir, basename
|
|
from enum import Enum
|
|
|
|
|
|
class DialogApp(wx.App):
|
|
def getFileDialog(self):
|
|
with wx.FileDialog(None, "Open CSV file", wildcard="CSV files (*.csv)|*.csv",
|
|
style=wx.FD_OPEN | wx.FD_FILE_MUST_EXIST | wx.FD_CHANGE_DIR | wx.FD_MULTIPLE) as fileDialog:
|
|
if fileDialog.ShowModal() == wx.ID_CANCEL:
|
|
return None # the user changed their mind
|
|
else:
|
|
# Proceed loading the file chosen by the user
|
|
return fileDialog.GetPaths()
|
|
|
|
def getDirDialog(self):
|
|
with wx.DirDialog (None, "Choose input directory", "",
|
|
style=wx.FD_OPEN | wx.FD_FILE_MUST_EXIST | wx.FD_CHANGE_DIR) as dirDialog:
|
|
if dirDialog.ShowModal() == wx.ID_CANCEL:
|
|
return None # the user changed their mind
|
|
else:
|
|
# Proceed loading the dir chosen by the user
|
|
return dirDialog.GetPath()
|
|
class Signal:
|
|
def __init__(self, name, parent):
|
|
self.name = name
|
|
self.full_name = "{}/{}".format(parent.filename, self.name)
|
|
self.selected = False
|
|
self.color = random.choice(Dark2[8])
|
|
self.line = None
|
|
self.bands = None
|
|
self.bokeh_source = parent.bokeh_source
|
|
self.min_val = 0
|
|
self.max_val = 0
|
|
self.axis = 'default'
|
|
self.sub_signals = []
|
|
for name in self.bokeh_source.data.keys():
|
|
if (len(name.split('/')) == 1 and name == self.name) or '/'.join(name.split('/')[:-1]) == self.name:
|
|
self.sub_signals.append(name)
|
|
if len(self.sub_signals) > 1:
|
|
self.mean_signal = squeeze_list([name for name in self.sub_signals if 'Mean' in name.split('/')[-1]])
|
|
self.stdev_signal = squeeze_list([name for name in self.sub_signals if 'Stdev' in name.split('/')[-1]])
|
|
self.min_signal = squeeze_list([name for name in self.sub_signals if 'Min' in name.split('/')[-1]])
|
|
self.max_signal = squeeze_list([name for name in self.sub_signals if 'Max' in name.split('/')[-1]])
|
|
else:
|
|
self.mean_signal = squeeze_list(self.name)
|
|
self.stdev_signal = None
|
|
self.min_signal = None
|
|
self.max_signal = None
|
|
self.has_bollinger_bands = False
|
|
if self.mean_signal and self.stdev_signal and self.min_signal and self.max_signal:
|
|
self.has_bollinger_bands = True
|
|
self.show_bollinger_bands = False
|
|
self.bollinger_bands_source = None
|
|
self.update_range()
|
|
|
|
def set_color(self, color):
|
|
self.color = color
|
|
if self.line:
|
|
self.line.glyph.line_color = color
|
|
if self.bands:
|
|
self.bands.glyph.fill_color = color
|
|
|
|
def set_selected(self, val):
|
|
global current_color
|
|
if self.selected != val:
|
|
self.selected = val
|
|
if self.line:
|
|
# self.set_color(Dark2[8][current_color])
|
|
# current_color = (current_color + 1) % len(Dark2[8])
|
|
self.line.visible = self.selected
|
|
if self.bands:
|
|
self.bands.visible = self.selected and self.show_bollinger_bands
|
|
elif self.selected:
|
|
# lazy plotting - plot only when selected for the first time
|
|
show_spinner()
|
|
self.set_color(Dark2[8][current_color])
|
|
current_color = (current_color + 1) % len(Dark2[8])
|
|
if self.has_bollinger_bands:
|
|
self.set_bands_source()
|
|
self.create_bands()
|
|
self.line = plot.line('index', self.mean_signal, source=self.bokeh_source,
|
|
line_color=self.color, line_width=2)
|
|
self.line.visible = True
|
|
hide_spinner()
|
|
|
|
def set_dash(self, dash):
|
|
self.line.glyph.line_dash = dash
|
|
|
|
def create_bands(self):
|
|
self.bands = plot.patch(x='band_x', y='band_y', source=self.bollinger_bands_source,
|
|
color=self.color, fill_alpha=0.4, alpha=0.1, line_width=0)
|
|
self.bands.visible = self.show_bollinger_bands
|
|
# self.min_line = plot.line('index', self.min_signal, source=self.bokeh_source,
|
|
# line_color=self.color, line_width=3, line_dash="4 4")
|
|
# self.max_line = plot.line('index', self.max_signal, source=self.bokeh_source,
|
|
# line_color=self.color, line_width=3, line_dash="4 4")
|
|
# self.min_line.visible = self.show_bollinger_bands
|
|
# self.max_line.visible = self.show_bollinger_bands
|
|
|
|
def set_bands_source(self):
|
|
x_ticks = self.bokeh_source.data['index']
|
|
mean_values = self.bokeh_source.data[self.mean_signal]
|
|
stdev_values = self.bokeh_source.data[self.stdev_signal]
|
|
band_x = np.append(x_ticks, x_ticks[::-1])
|
|
band_y = np.append(mean_values - stdev_values, mean_values[::-1] + stdev_values[::-1])
|
|
source_data = {'band_x': band_x, 'band_y': band_y}
|
|
if self.bollinger_bands_source:
|
|
self.bollinger_bands_source.data = source_data
|
|
else:
|
|
self.bollinger_bands_source = ColumnDataSource(source_data)
|
|
|
|
def change_bollinger_bands_state(self, new_state):
|
|
self.show_bollinger_bands = new_state
|
|
if self.bands and self.selected:
|
|
self.bands.visible = new_state
|
|
# self.min_line.visible = new_state
|
|
# self.max_line.visible = new_state
|
|
|
|
def update_range(self):
|
|
self.min_val = np.min(self.bokeh_source.data[self.mean_signal])
|
|
self.max_val = np.max(self.bokeh_source.data[self.mean_signal])
|
|
|
|
def set_axis(self, axis):
|
|
self.axis = axis
|
|
self.line.y_range_name = axis
|
|
|
|
def toggle_axis(self):
|
|
if self.axis == 'default':
|
|
self.set_axis('secondary')
|
|
else:
|
|
self.set_axis('default')
|
|
|
|
|
|
class SignalsFileBase:
|
|
def __init__(self):
|
|
self.full_csv_path = ""
|
|
self.dir = ""
|
|
self.filename = ""
|
|
self.signals_averaging_window = 1
|
|
self.show_bollinger_bands = False
|
|
self.csv = None
|
|
self.bokeh_source = None
|
|
self.bokeh_source_orig = None
|
|
self.last_modified = None
|
|
self.signals = {}
|
|
self.separate_files = False
|
|
|
|
def load_csv(self):
|
|
pass
|
|
|
|
def update_source_and_signals(self):
|
|
# create bokeh data sources
|
|
self.bokeh_source_orig = ColumnDataSource(self.csv)
|
|
self.bokeh_source_orig.data['index'] = self.bokeh_source_orig.data[x_axis]
|
|
|
|
if self.bokeh_source is None:
|
|
self.bokeh_source = ColumnDataSource(self.csv)
|
|
else:
|
|
# self.bokeh_source.data = self.bokeh_source_orig.data
|
|
# smooth the data if necessary
|
|
self.change_averaging_window(self.signals_averaging_window, force=True)
|
|
|
|
# create all the signals
|
|
if len(self.signals.keys()) == 0:
|
|
self.signals = {}
|
|
unique_signal_names = []
|
|
for name in self.csv.columns:
|
|
if len(name.split('/')) == 1:
|
|
unique_signal_names.append(name)
|
|
else:
|
|
unique_signal_names.append('/'.join(name.split('/')[:-1]))
|
|
unique_signal_names = list(set(unique_signal_names))
|
|
for signal_name in unique_signal_names:
|
|
self.signals[signal_name] = Signal(signal_name, self)
|
|
|
|
def load(self):
|
|
self.load_csv()
|
|
self.update_source_and_signals()
|
|
|
|
def reload_data(self, signals):
|
|
# this function is a workaround to reload the data of all the signals
|
|
# if the data doesn't change, bokeh does not refreshes the line
|
|
self.change_averaging_window(self.signals_averaging_window + 1, force=True)
|
|
self.change_averaging_window(self.signals_averaging_window - 1, force=True)
|
|
|
|
def change_averaging_window(self, new_size, force=False, signals=None):
|
|
if force or self.signals_averaging_window != new_size:
|
|
self.signals_averaging_window = new_size
|
|
win = np.ones(new_size) / new_size
|
|
temp_data = self.bokeh_source_orig.data.copy()
|
|
for col in self.bokeh_source.data.keys():
|
|
if col == 'index' or col in x_axis_options \
|
|
or (signals and not any(col in signal for signal in signals)):
|
|
temp_data[col] = temp_data[col][:-new_size]
|
|
continue
|
|
temp_data[col] = np.convolve(self.bokeh_source_orig.data[col], win, mode='same')[:-new_size]
|
|
self.bokeh_source.data = temp_data
|
|
|
|
# smooth bollinger bands
|
|
for signal in self.signals.values():
|
|
if signal.has_bollinger_bands:
|
|
signal.set_bands_source()
|
|
|
|
def hide_all_signals(self):
|
|
for signal_name in self.signals.keys():
|
|
self.set_signal_selection(signal_name, False)
|
|
|
|
def set_signal_selection(self, signal_name, val):
|
|
self.signals[signal_name].set_selected(val)
|
|
|
|
def change_bollinger_bands_state(self, new_state):
|
|
self.show_bollinger_bands = new_state
|
|
for signal in self.signals.values():
|
|
signal.change_bollinger_bands_state(new_state)
|
|
|
|
def file_was_modified_on_disk(self):
|
|
pass
|
|
|
|
def get_range_of_selected_signals_on_axis(self, axis, selected_signal=None):
|
|
max_val = -float('inf')
|
|
min_val = float('inf')
|
|
for signal in self.signals.values():
|
|
if (selected_signal and signal.name == selected_signal) or (signal.selected and signal.axis == axis):
|
|
max_val = max(max_val, signal.max_val)
|
|
min_val = min(min_val, signal.min_val)
|
|
return min_val, max_val
|
|
|
|
def get_selected_signals(self):
|
|
signals = []
|
|
for signal in self.signals.values():
|
|
if signal.selected:
|
|
signals.append(signal)
|
|
return signals
|
|
|
|
def show_files_separately(self, val):
|
|
pass
|
|
|
|
|
|
class SignalsFile(SignalsFileBase):
|
|
def __init__(self, csv_path, load=True):
|
|
SignalsFileBase.__init__(self)
|
|
self.full_csv_path = csv_path
|
|
self.dir, self.filename, _ = break_file_path(csv_path)
|
|
if load:
|
|
self.load()
|
|
# this helps set the correct x axis
|
|
self.change_averaging_window(1, force=True)
|
|
|
|
def load_csv(self):
|
|
# load csv and fix sparse data.
|
|
# csv can be in the middle of being written so we use try - except
|
|
self.csv = None
|
|
while self.csv is None:
|
|
try:
|
|
self.csv = pd.read_csv(self.full_csv_path)
|
|
break
|
|
except EmptyDataError:
|
|
self.csv = None
|
|
continue
|
|
self.csv = self.csv.interpolate()
|
|
self.csv.fillna(value=0, inplace=True)
|
|
|
|
self.last_modified = os.path.getmtime(self.full_csv_path)
|
|
|
|
def file_was_modified_on_disk(self):
|
|
return self.last_modified != os.path.getmtime(self.full_csv_path)
|
|
|
|
|
|
class SignalsFilesGroup(SignalsFileBase):
|
|
def __init__(self, csv_paths):
|
|
SignalsFileBase.__init__(self)
|
|
self.full_csv_paths = csv_paths
|
|
self.signals_files = []
|
|
if len(csv_paths) == 1 and os.path.isdir(csv_paths[0]):
|
|
self.signals_files = [SignalsFile(str(file), load=False) for file in add_directory_csv_files(csv_paths[0])]
|
|
else:
|
|
for csv_path in csv_paths:
|
|
if os.path.isdir(csv_path):
|
|
self.signals_files.append(SignalsFilesGroup(add_directory_csv_files(csv_path)))
|
|
else:
|
|
self.signals_files.append(SignalsFile(str(csv_path), load=False))
|
|
if len(csv_paths) == 1:
|
|
# get the parent directory name (since the current directory is the timestamp directory)
|
|
self.dir = os.path.abspath(os.path.join(os.path.dirname(csv_paths[0]), '..'))
|
|
else:
|
|
# get the common directory for all the experiments
|
|
self.dir = os.path.dirname(os.path.commonprefix(csv_paths))
|
|
self.filename = '{} - Group({})'.format(basename(self.dir), len(self.signals_files))
|
|
self.load()
|
|
|
|
# this helps set the correct x axis
|
|
self.change_averaging_window(1, force=True)
|
|
|
|
def load_csv(self):
|
|
corrupted_files_idx = []
|
|
for idx, signal_file in enumerate(self.signals_files):
|
|
signal_file.load_csv()
|
|
if not all(option in signal_file.csv.keys() for option in x_axis_options):
|
|
print("Warning: {} file seems to be corrupted and does contain the necessary columns "
|
|
"and will not be rendered".format(signal_file.filename))
|
|
corrupted_files_idx.append(idx)
|
|
|
|
for file_idx in corrupted_files_idx:
|
|
del self.signals_files[file_idx]
|
|
|
|
# get the stats of all the columns
|
|
csv_group = pd.concat([signals_file.csv for signals_file in self.signals_files])
|
|
columns_to_remove = [s for s in csv_group.columns if '/Stdev' in s] + \
|
|
[s for s in csv_group.columns if '/Min' in s] + \
|
|
[s for s in csv_group.columns if '/Max' in s]
|
|
for col in columns_to_remove:
|
|
del csv_group[col]
|
|
csv_group = csv_group.groupby(csv_group.index)
|
|
self.csv_mean = csv_group.mean()
|
|
self.csv_mean.columns = [s + '/Mean' for s in self.csv_mean.columns]
|
|
self.csv_stdev = csv_group.std()
|
|
self.csv_stdev.columns = [s + '/Stdev' for s in self.csv_stdev.columns]
|
|
self.csv_min = csv_group.min()
|
|
self.csv_min.columns = [s + '/Min' for s in self.csv_min.columns]
|
|
self.csv_max = csv_group.max()
|
|
self.csv_max.columns = [s + '/Max' for s in self.csv_max.columns]
|
|
|
|
# get the indices from the file with the least number of indices and which is not an evaluation worker
|
|
file_with_min_indices = self.signals_files[0]
|
|
for signals_file in self.signals_files:
|
|
if signals_file.csv.shape[0] < file_with_min_indices.csv.shape[0] and \
|
|
'Training reward' in signals_file.csv.keys():
|
|
file_with_min_indices = signals_file
|
|
self.index_columns = file_with_min_indices.csv[x_axis_options]
|
|
|
|
# concat the stats and the indices columns
|
|
num_rows = file_with_min_indices.csv.shape[0]
|
|
self.csv = pd.concat([self.index_columns, self.csv_mean.head(num_rows), self.csv_stdev.head(num_rows),
|
|
self.csv_min.head(num_rows), self.csv_max.head(num_rows)], axis=1)
|
|
|
|
# remove the stat columns for the indices columns
|
|
columns_to_remove = [s + '/Mean' for s in x_axis_options] + \
|
|
[s + '/Stdev' for s in x_axis_options] + \
|
|
[s + '/Min' for s in x_axis_options] + \
|
|
[s + '/Max' for s in x_axis_options]
|
|
for col in columns_to_remove:
|
|
del self.csv[col]
|
|
|
|
# remove NaNs
|
|
self.csv.fillna(value=0, inplace=True) # removing this line will make bollinger bands fail
|
|
for key in self.csv.keys():
|
|
if 'Stdev' in key and 'Evaluation' not in key:
|
|
self.csv[key] = self.csv[key].fillna(value=0)
|
|
|
|
for signal_file in self.signals_files:
|
|
signal_file.update_source_and_signals()
|
|
|
|
def change_averaging_window(self, new_size, force=False, signals=None):
|
|
for signal_file in self.signals_files:
|
|
signal_file.change_averaging_window(new_size, force, signals)
|
|
SignalsFileBase.change_averaging_window(self, new_size, force, signals)
|
|
|
|
def set_signal_selection(self, signal_name, val):
|
|
self.show_files_separately(self.separate_files)
|
|
SignalsFileBase.set_signal_selection(self, signal_name, val)
|
|
|
|
def file_was_modified_on_disk(self):
|
|
for signal_file in self.signals_files:
|
|
if signal_file.file_was_modified_on_disk():
|
|
return True
|
|
return False
|
|
|
|
def show_files_separately(self, val):
|
|
self.separate_files = val
|
|
for signal in self.signals.values():
|
|
if signal.selected:
|
|
if val:
|
|
signal.set_dash("4 4")
|
|
else:
|
|
signal.set_dash("")
|
|
for signal_file in self.signals_files:
|
|
try:
|
|
if val:
|
|
signal_file.set_signal_selection(signal.name, signal.selected)
|
|
else:
|
|
signal_file.set_signal_selection(signal.name, False)
|
|
except:
|
|
pass
|
|
|
|
|
|
class RunType(Enum):
|
|
SINGLE_FOLDER_SINGLE_FILE = 1
|
|
SINGLE_FOLDER_MULTIPLE_FILES = 2
|
|
MULTIPLE_FOLDERS_SINGLE_FILES = 3
|
|
MULTIPLE_FOLDERS_MULTIPLE_FILES = 4
|
|
UNKNOWN = 0
|
|
|
|
|
|
class FolderType(Enum):
|
|
SINGLE_FILE = 1
|
|
MULTIPLE_FILES = 2
|
|
MULTIPLE_FOLDERS = 3
|
|
EMPTY = 4
|
|
|
|
dialog = DialogApp()
|
|
|
|
# read data
|
|
patches = {}
|
|
signals_files = {}
|
|
selected_file = None
|
|
x_axis = 'Episode #'
|
|
x_axis_options = ['Episode #', 'Total steps', 'Wall-Clock Time']
|
|
current_color = 0
|
|
|
|
# spinner
|
|
root_dir = os.path.dirname(os.path.abspath(__file__))
|
|
with open(os.path.join(root_dir, 'spinner.css'), 'r') as f:
|
|
spinner_style = """<style>{}</style>""".format(f.read())
|
|
spinner_html = """<ul class="spinner"><li></li><li></li><li></li><li></li></ul>"""
|
|
spinner = Div(text="""""")
|
|
|
|
# file refresh time placeholder
|
|
refresh_info = Div(text="""""", width=210)
|
|
|
|
# create figures
|
|
plot = figure(plot_width=1200, plot_height=800,
|
|
tools='pan,box_zoom,wheel_zoom,crosshair,undo,redo,reset,save',
|
|
toolbar_location='above', x_axis_label='Episodes',
|
|
x_range=Range1d(0, 10000), y_range=Range1d(0, 100000))
|
|
plot.extra_y_ranges = {"secondary": Range1d(start=-100, end=200)}
|
|
plot.add_layout(LinearAxis(y_range_name="secondary"), 'right')
|
|
|
|
# legend
|
|
div = Div(text="""""")
|
|
legend = widgetbox([div])
|
|
|
|
bokeh_legend = Legend(
|
|
items=[("12345678901234567890123456789012345678901234567890", [])], # 50 letters
|
|
# items=[(" ", [])], # 50 letters
|
|
location=(-20, 0), orientation="vertical",
|
|
border_line_color="black",
|
|
label_text_font_size={'value': '9pt'},
|
|
margin=30
|
|
)
|
|
plot.add_layout(bokeh_legend, "right")
|
|
|
|
|
|
def update_axis_range(name, range_placeholder):
|
|
max_val = -float('inf')
|
|
min_val = float('inf')
|
|
selected_signal = None
|
|
if name in x_axis_options:
|
|
selected_signal = name
|
|
for signals_file in signals_files.values():
|
|
curr_min_val, curr_max_val = signals_file.get_range_of_selected_signals_on_axis(name, selected_signal)
|
|
max_val = max(max_val, curr_max_val)
|
|
min_val = min(min_val, curr_min_val)
|
|
if min_val != float('inf'):
|
|
range = max_val - min_val
|
|
range_placeholder.start = min_val - 0.1 * range
|
|
range_placeholder.end = max_val + 0.1 * range
|
|
|
|
|
|
# update axes ranges
|
|
def update_ranges():
|
|
update_axis_range('default', plot.y_range)
|
|
update_axis_range('secondary', plot.extra_y_ranges['secondary'])
|
|
|
|
|
|
def get_all_selected_signals():
|
|
signals = []
|
|
for signals_file in signals_files.values():
|
|
signals += signals_file.get_selected_signals()
|
|
return signals
|
|
|
|
|
|
# update legend using the legend text dictionary
|
|
def update_legend():
|
|
legend_text = """<div></div>"""
|
|
selected_signals = get_all_selected_signals()
|
|
items = []
|
|
for signal in selected_signals:
|
|
side_sign = "<" if signal.axis == 'default' else ">"
|
|
legend_text += """<div style='color: {}'><b>{} {}</b></div>"""\
|
|
.format(signal.color, side_sign, signal.full_name)
|
|
items.append((signal.full_name, [signal.line]))
|
|
div.text = legend_text
|
|
# the visible=false => visible=true is a hack to make the legend render again
|
|
bokeh_legend.visible = False
|
|
bokeh_legend.items = items
|
|
bokeh_legend.visible = True
|
|
|
|
|
|
# select lines to display
|
|
def select_data(args, old, new):
|
|
if selected_file is None:
|
|
return
|
|
show_spinner()
|
|
selected_signals = new
|
|
for signal_name in selected_file.signals.keys():
|
|
is_selected = signal_name in selected_signals
|
|
selected_file.set_signal_selection(signal_name, is_selected)
|
|
|
|
# update axes ranges
|
|
update_ranges()
|
|
update_axis_range(x_axis, plot.x_range)
|
|
|
|
# update the legend
|
|
update_legend()
|
|
|
|
hide_spinner()
|
|
|
|
|
|
# add new lines to the plot
|
|
def plot_signals(signals_file, signals):
|
|
for idx, signal in enumerate(signals):
|
|
signal.line = plot.line('index', signal.name, source=signals_file.bokeh_source,
|
|
line_color=signal.color, line_width=2)
|
|
|
|
|
|
def open_file_dialog():
|
|
return dialog.getFileDialog()
|
|
|
|
|
|
def open_directory_dialog():
|
|
return dialog.getDirDialog()
|
|
|
|
|
|
def show_spinner():
|
|
spinner.text = spinner_style + spinner_html
|
|
|
|
|
|
def hide_spinner():
|
|
spinner.text = ""
|
|
|
|
|
|
# will create a group from the files
|
|
def create_files_group_signal(files):
|
|
global selected_file
|
|
signals_file = SignalsFilesGroup(files)
|
|
signals_files[signals_file.filename] = signals_file
|
|
|
|
filenames = [signals_file.filename]
|
|
files_selector.options += filenames
|
|
files_selector.value = filenames[0]
|
|
selected_file = signals_file
|
|
|
|
|
|
# load files from disk as a group
|
|
def load_files_group():
|
|
show_spinner()
|
|
files = open_file_dialog()
|
|
# no files selected
|
|
if not files or not files[0]:
|
|
hide_spinner()
|
|
return
|
|
|
|
change_displayed_doc()
|
|
|
|
if len(files) == 1:
|
|
create_files_signal(files)
|
|
else:
|
|
create_files_group_signal(files)
|
|
|
|
change_selected_signals_in_data_selector([""])
|
|
hide_spinner()
|
|
|
|
|
|
# classify the folder as containing a single file, multiple files or only folders
|
|
def classify_folder(dir_path):
|
|
files = [f for f in listdir(dir_path) if isfile(join(dir_path, f)) and f.endswith('.csv')]
|
|
folders = [d for d in listdir(dir_path) if isdir(join(dir_path, d))]
|
|
if len(files) == 1:
|
|
return FolderType.SINGLE_FILE
|
|
elif len(files) > 1:
|
|
return FolderType.MULTIPLE_FILES
|
|
elif len(folders) >= 1:
|
|
return FolderType.MULTIPLE_FOLDERS
|
|
else:
|
|
return FolderType.EMPTY
|
|
|
|
|
|
# finds if this is single-threaded or multi-threaded
|
|
def get_run_type(dir_path):
|
|
folder_type = classify_folder(dir_path)
|
|
if folder_type == FolderType.SINGLE_FILE:
|
|
return RunType.SINGLE_FOLDER_SINGLE_FILE
|
|
|
|
elif folder_type == FolderType.MULTIPLE_FILES:
|
|
return RunType.SINGLE_FOLDER_MULTIPLE_FILES
|
|
|
|
elif folder_type == FolderType.MULTIPLE_FOLDERS:
|
|
# folder contains sub dirs -> we assume we can classify the folder using only the first sub dir
|
|
sub_dirs = [d for d in listdir(dir_path) if isdir(join(dir_path, d))]
|
|
|
|
# checking only the first folder in the root dir for its type, since we assume that all sub dirs will share the
|
|
# same structure (i.e. if one is a result of multi-threaded run, so will all the other).
|
|
folder_type = classify_folder(os.path.join(dir_path, sub_dirs[0]))
|
|
if folder_type == FolderType.SINGLE_FILE:
|
|
folder_type = RunType.MULTIPLE_FOLDERS_SINGLE_FILES
|
|
elif folder_type == FolderType.MULTIPLE_FILES:
|
|
folder_type = RunType.MULTIPLE_FOLDERS_MULTIPLE_FILES
|
|
return folder_type
|
|
|
|
|
|
# takes path to dir and recursively adds all it's files to paths
|
|
def add_directory_csv_files(dir_path, paths=None):
|
|
if not paths:
|
|
paths = []
|
|
|
|
for p in listdir(dir_path):
|
|
path = join(dir_path, p)
|
|
if isdir(path):
|
|
# call recursively for each dir
|
|
paths = add_directory_csv_files(path, paths)
|
|
elif isfile(path) and path.endswith('.csv'):
|
|
# add every file to the list
|
|
paths.append(path)
|
|
|
|
return paths
|
|
|
|
|
|
# create a signal file from the directory path according to the directory underlying structure
|
|
def handle_dir(dir_path, run_type):
|
|
paths = add_directory_csv_files(dir_path)
|
|
if run_type == RunType.SINGLE_FOLDER_SINGLE_FILE:
|
|
create_files_signal(paths)
|
|
elif run_type == RunType.SINGLE_FOLDER_MULTIPLE_FILES:
|
|
create_files_group_signal(paths)
|
|
elif run_type == RunType.MULTIPLE_FOLDERS_SINGLE_FILES:
|
|
create_files_group_signal(paths)
|
|
elif run_type == RunType.MULTIPLE_FOLDERS_MULTIPLE_FILES:
|
|
sub_dirs = [d for d in listdir(dir_path) if isdir(join(dir_path, d))]
|
|
# for d in sub_dirs:
|
|
# paths = add_directory_csv_files(os.path.join(dir_path, d))
|
|
# create_files_group_signal(paths)
|
|
create_files_group_signal([os.path.join(dir_path, d) for d in sub_dirs])
|
|
|
|
|
|
# load directory from disk as a group
|
|
def load_directory_group():
|
|
global selected_file
|
|
show_spinner()
|
|
directory = open_directory_dialog()
|
|
# no files selected
|
|
if not directory:
|
|
hide_spinner()
|
|
return
|
|
|
|
change_displayed_doc()
|
|
|
|
handle_dir(directory, get_run_type(directory))
|
|
|
|
change_selected_signals_in_data_selector([""])
|
|
hide_spinner()
|
|
|
|
|
|
def create_files_signal(files):
|
|
global selected_file
|
|
new_signal_files = []
|
|
for idx, file_path in enumerate(files):
|
|
signals_file = SignalsFile(str(file_path))
|
|
signals_files[signals_file.filename] = signals_file
|
|
new_signal_files.append(signals_file)
|
|
|
|
filenames = [f.filename for f in new_signal_files]
|
|
|
|
files_selector.options += filenames
|
|
files_selector.value = filenames[0]
|
|
selected_file = new_signal_files[0]
|
|
|
|
|
|
# load files from disk
|
|
def load_files():
|
|
show_spinner()
|
|
files = open_file_dialog()
|
|
|
|
# no files selected
|
|
if not files or not files[0]:
|
|
hide_spinner()
|
|
return
|
|
|
|
create_files_signal(files)
|
|
hide_spinner()
|
|
|
|
change_selected_signals_in_data_selector([""])
|
|
|
|
|
|
def unload_file():
|
|
global selected_file
|
|
global signals_files
|
|
if selected_file is None:
|
|
return
|
|
selected_file.hide_all_signals()
|
|
del signals_files[selected_file.filename]
|
|
data_selector.options = [""]
|
|
filenames = cycle(files_selector.options)
|
|
files_selector.options.remove(selected_file.filename)
|
|
if len(files_selector.options) > 0:
|
|
files_selector.value = next(filenames)
|
|
else:
|
|
files_selector.value = None
|
|
update_legend()
|
|
refresh_info.text = ""
|
|
|
|
|
|
# reload the selected csv file
|
|
def reload_all_files(force=False):
|
|
for file_to_load in signals_files.values():
|
|
if force or file_to_load.file_was_modified_on_disk():
|
|
file_to_load.load()
|
|
refresh_info.text = "last update: " + str(datetime.datetime.now()).split(".")[0]
|
|
|
|
|
|
# unselect the currently selected signals and then select the requested signals in the data selector
|
|
def change_selected_signals_in_data_selector(selected_signals):
|
|
# the default bokeh way is not working due to a bug since Bokeh 0.12.6 (https://github.com/bokeh/bokeh/issues/6501)
|
|
# this will currently cause the signals to change color
|
|
for value in list(data_selector.value):
|
|
if value in data_selector.options:
|
|
index = data_selector.options.index(value)
|
|
data_selector.options.remove(value)
|
|
data_selector.value.remove(value)
|
|
data_selector.options.insert(index, value)
|
|
data_selector.value = selected_signals
|
|
|
|
|
|
# change data options according to the selected file
|
|
def change_data_selector(args, old, new):
|
|
global selected_file
|
|
if new is None:
|
|
selected_file = None
|
|
return
|
|
show_spinner()
|
|
selected_file = signals_files[new]
|
|
data_selector.options = sorted(list(selected_file.signals.keys()))
|
|
selected_signal_names = [s.name for s in selected_file.signals.values() if s.selected]
|
|
if not selected_signal_names:
|
|
selected_signal_names = [""]
|
|
change_selected_signals_in_data_selector(selected_signal_names)
|
|
averaging_slider.value = selected_file.signals_averaging_window
|
|
group_cb.active = [0 if selected_file.show_bollinger_bands else None]
|
|
group_cb.active += [1 if selected_file.separate_files else None]
|
|
hide_spinner()
|
|
|
|
|
|
# smooth all the signals of the selected file
|
|
def update_averaging(args, old, new):
|
|
show_spinner()
|
|
selected_file.change_averaging_window(new)
|
|
hide_spinner()
|
|
|
|
|
|
def change_x_axis(val):
|
|
global x_axis
|
|
show_spinner()
|
|
x_axis = x_axis_options[val]
|
|
plot.xaxis.axis_label = x_axis
|
|
reload_all_files(force=True)
|
|
update_axis_range(x_axis, plot.x_range)
|
|
hide_spinner()
|
|
|
|
|
|
# move the signal between the main and secondary Y axes
|
|
def toggle_second_axis():
|
|
show_spinner()
|
|
signals = selected_file.get_selected_signals()
|
|
for signal in signals:
|
|
signal.toggle_axis()
|
|
|
|
update_ranges()
|
|
update_legend()
|
|
|
|
# this is just for redrawing the signals
|
|
selected_file.reload_data([signal.name for signal in signals])
|
|
|
|
hide_spinner()
|
|
|
|
|
|
def toggle_group_property(new):
|
|
# toggle show / hide Bollinger bands
|
|
selected_file.change_bollinger_bands_state(0 in new)
|
|
|
|
# show a separate signal for each file in a group
|
|
selected_file.show_files_separately(1 in new)
|
|
|
|
|
|
def change_displayed_doc():
|
|
if doc.roots[0] == landing_page:
|
|
doc.remove_root(landing_page)
|
|
doc.add_root(layout)
|
|
|
|
|
|
# Color selection - most of these functions are taken from bokeh examples (plotting/color_sliders.py)
|
|
def select_color(attr, old, new):
|
|
show_spinner()
|
|
signals = selected_file.get_selected_signals()
|
|
for signal in signals:
|
|
signal.set_color(rgb_to_hex(crRGBs[new['1d']['indices'][0]]))
|
|
hide_spinner()
|
|
|
|
|
|
def generate_color_range(N, I):
|
|
HSV_tuples = [(x*1.0/N, 0.5, I) for x in range(N)]
|
|
RGB_tuples = map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)
|
|
for_conversion = []
|
|
for RGB_tuple in RGB_tuples:
|
|
for_conversion.append((int(RGB_tuple[0]*255), int(RGB_tuple[1]*255), int(RGB_tuple[2]*255)))
|
|
hex_colors = [rgb_to_hex(RGB_tuple) for RGB_tuple in for_conversion]
|
|
return hex_colors, for_conversion
|
|
|
|
|
|
# convert RGB tuple to hexadecimal code
|
|
def rgb_to_hex(rgb):
|
|
return '#%02x%02x%02x' % rgb
|
|
|
|
|
|
# convert hexadecimal to RGB tuple
|
|
def hex_to_dec(hex):
|
|
red = ''.join(hex.strip('#')[0:2])
|
|
green = ''.join(hex.strip('#')[2:4])
|
|
blue = ''.join(hex.strip('#')[4:6])
|
|
return int(red, 16), int(green, 16), int(blue,16)
|
|
|
|
color_resolution = 1000
|
|
brightness = 0.75 # change to have brighter/darker colors
|
|
crx = list(range(1, color_resolution+1)) # the resolution is 1000 colors
|
|
cry = [5 for i in range(len(crx))]
|
|
crcolor, crRGBs = generate_color_range(color_resolution, brightness) # produce spectrum
|
|
|
|
|
|
# ---------------- Build Website Layout -------------------
|
|
|
|
# select file
|
|
file_selection_button = Button(label="Select Files", button_type="success", width=120)
|
|
file_selection_button.on_click(load_files_group)
|
|
|
|
files_selector_spacer = Spacer(width=10)
|
|
|
|
group_selection_button = Button(label="Select Directory", button_type="primary", width=140)
|
|
group_selection_button.on_click(load_directory_group)
|
|
|
|
unload_file_button = Button(label="Unload", button_type="danger", width=50)
|
|
unload_file_button.on_click(unload_file)
|
|
|
|
# files selection box
|
|
files_selector = Select(title="Files:", options=[], width=200)
|
|
files_selector.on_change('value', change_data_selector)
|
|
|
|
# data selection box
|
|
data_selector = MultiSelect(title="Data:", options=[], size=12)
|
|
data_selector.on_change('value', select_data)
|
|
|
|
# x axis selection box
|
|
x_axis_selector_title = Div(text="""X Axis:""")
|
|
x_axis_selector = RadioButtonGroup(labels=x_axis_options, active=0)
|
|
x_axis_selector.on_click(change_x_axis)
|
|
|
|
# toggle second axis button
|
|
toggle_second_axis_button = Button(label="Toggle Second Axis", button_type="success")
|
|
toggle_second_axis_button.on_click(toggle_second_axis)
|
|
|
|
# averaging slider
|
|
averaging_slider = Slider(title="Averaging window", start=1, end=101, step=10)
|
|
averaging_slider.on_change('value', update_averaging)
|
|
|
|
# group properties checkbox
|
|
group_cb = CheckboxGroup(labels=["Show statistics bands", "Ungroup signals"], active=[])
|
|
group_cb.on_click(toggle_group_property)
|
|
|
|
# color selector
|
|
color_selector_title = Div(text="""Select Color:""")
|
|
crsource = ColumnDataSource(data=dict(x=crx, y=cry, crcolor=crcolor, RGBs=crRGBs))
|
|
color_selector = figure(x_range=(0, color_resolution), y_range=(0, 10),
|
|
plot_width=300, plot_height=40,
|
|
tools='tap')
|
|
color_selector.axis.visible = False
|
|
color_range = color_selector.rect(x='x', y='y', width=1, height=10,
|
|
color='crcolor', source=crsource)
|
|
crsource.on_change('selected', select_color)
|
|
color_range.nonselection_glyph = color_range.glyph
|
|
color_selector.toolbar.logo = None
|
|
color_selector.toolbar_location = None
|
|
|
|
# title
|
|
title = Div(text="""<h1>Coach Dashboard</h1>""")
|
|
|
|
# landing page
|
|
landing_page_description = Div(text="""<h3>Start by selecting an experiment file or directory to open:</h3>""")
|
|
center = Div(text="""<style>html { text-align: center; } </style>""")
|
|
center_buttons = Div(text="""<style>.bk-grid-row .bk-layout-fixed { margin: 0 auto; }</style>""", width=0)
|
|
landing_page = column(center,
|
|
title,
|
|
landing_page_description,
|
|
row(center_buttons),
|
|
row(file_selection_button, sizing_mode='scale_width'),
|
|
row(group_selection_button, sizing_mode='scale_width'),
|
|
sizing_mode='scale_width')
|
|
|
|
# main layout of the document
|
|
layout = row(file_selection_button, files_selector_spacer, group_selection_button, width=300)
|
|
layout = column(layout, files_selector)
|
|
layout = column(layout, row(refresh_info, unload_file_button))
|
|
layout = column(layout, data_selector)
|
|
layout = column(layout, color_selector_title)
|
|
layout = column(layout, color_selector)
|
|
layout = column(layout, x_axis_selector_title)
|
|
layout = column(layout, x_axis_selector)
|
|
layout = column(layout, group_cb)
|
|
layout = column(layout, toggle_second_axis_button)
|
|
layout = column(layout, averaging_slider)
|
|
# layout = column(layout, legend)
|
|
layout = row(layout, plot)
|
|
layout = column(title, layout)
|
|
layout = column(layout, spinner)
|
|
|
|
doc = curdoc()
|
|
doc.add_root(landing_page)
|
|
|
|
doc.add_periodic_callback(reload_all_files, 20000)
|
|
plot.y_range = Range1d(0, 100)
|
|
plot.extra_y_ranges['secondary'] = Range1d(0, 100)
|
|
|
|
# show load file dialog immediately on start
|
|
#doc.add_timeout_callback(load_files, 1000)
|
|
|
|
if __name__ == "__main__":
|
|
# find an open port and run the server
|
|
import socket
|
|
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
|
port = 12345
|
|
while True:
|
|
try:
|
|
s.bind(("127.0.0.1", port))
|
|
break
|
|
except socket.error as e:
|
|
if e.errno == 98:
|
|
port += 1
|
|
s.close()
|
|
os.system('bokeh serve --show dashboard.py --port {}'.format(port))
|