1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/architectures/architecture.py

71 lines
2.2 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from configurations import Preset
class Architecture(object):
def __init__(self, tuning_parameters, name=""):
"""
:param tuning_parameters: A Preset class instance with all the running paramaters
:type tuning_parameters: Preset
:param name: The name of the network
:param name: string
"""
self.batch_size = tuning_parameters.batch_size
self.input_depth = tuning_parameters.env.observation_stack_size
self.input_height = tuning_parameters.env.desired_observation_height
self.input_width = tuning_parameters.env.desired_observation_width
self.num_actions = tuning_parameters.env.action_space_size
self.measurements_size = tuning_parameters.env.measurements_size \
if tuning_parameters.env.measurements_size else 0
self.learning_rate = tuning_parameters.learning_rate
self.optimizer = None
self.name = name
self.tp = tuning_parameters
def get_model(self, tuning_parameters):
"""
:param tuning_parameters: A Preset class instance with all the running parameters
:type tuning_parameters: Preset
:return: A model
"""
pass
def predict(self, inputs):
pass
def train_on_batch(self, inputs, targets):
pass
def get_weights(self):
pass
def set_weights(self, weights, rate=1.0):
pass
def reset_accumulated_gradients(self):
pass
def accumulate_gradients(self, inputs, targets):
pass
def apply_and_reset_gradients(self, gradients):
pass
def apply_gradients(self, gradients):
pass