1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

Unify base class using new-style (object).

This commit is contained in:
cxx
2017-10-26 10:16:11 +08:00
committed by Itai Caspi
parent 39cf78074c
commit f43c951c2d
16 changed files with 28 additions and 28 deletions

View File

@@ -33,7 +33,7 @@ from architectures.tensorflow_components.shared_variables import SharedRunningSt
from six.moves import range
class Agent:
class Agent(object):
def __init__(self, env, tuning_parameters, replicated_device=None, task_id=0):
"""
:param env: An environment instance

View File

@@ -17,7 +17,7 @@
from configurations import Preset
class Architecture:
class Architecture(object):
def __init__(self, tuning_parameters, name=""):
"""
:param tuning_parameters: A Preset class instance with all the running paramaters

View File

@@ -19,7 +19,7 @@ import ngraph as ng
from ngraph.util.names import name_scope
class InputEmbedder:
class InputEmbedder(object):
def __init__(self, input_size, batch_size=None, activation_function=neon.Rectlin(), name="embedder"):
self.name = name
self.input_size = input_size

View File

@@ -22,7 +22,7 @@ from utils import force_list
from architectures.neon_components.losses import *
class Head:
class Head(object):
def __init__(self, tuning_parameters, head_idx=0, loss_weight=1., is_local=True):
self.head_idx = head_idx
self.name = "head"

View File

@@ -20,7 +20,7 @@ from ngraph.util.names import name_scope
import numpy as np
class MiddlewareEmbedder:
class MiddlewareEmbedder(object):
def __init__(self, activation_function=neon.Rectlin(), name="middleware_embedder"):
self.name = name
self.input = None

View File

@@ -29,7 +29,7 @@ except ImportError:
failed_imports.append("Neon")
class NetworkWrapper:
class NetworkWrapper(object):
def __init__(self, tuning_parameters, has_target, has_global, name, replicated_device=None, worker_device=None):
"""

View File

@@ -17,7 +17,7 @@
import tensorflow as tf
class InputEmbedder:
class InputEmbedder(object):
def __init__(self, input_size, activation_function=tf.nn.relu, name="embedder"):
self.name = name
self.input_size = input_size

View File

@@ -28,7 +28,7 @@ def normalized_columns_initializer(std=1.0):
return _initializer
class Head:
class Head(object):
def __init__(self, tuning_parameters, head_idx=0, loss_weight=1., is_local=True):
self.head_idx = head_idx
self.name = "head"

View File

@@ -18,7 +18,7 @@ import tensorflow as tf
import numpy as np
class MiddlewareEmbedder:
class MiddlewareEmbedder(object):
def __init__(self, activation_function=tf.nn.relu, name="middleware_embedder"):
self.name = name
self.input = None

View File

@@ -24,7 +24,7 @@ class Frameworks(Enum):
Neon = 2
class InputTypes:
class InputTypes(object):
Observation = 1
Measurements = 2
GoalVector = 3
@@ -32,7 +32,7 @@ class InputTypes:
TimedObservation = 5
class OutputTypes:
class OutputTypes(object):
Q = 1
DuelingQ = 2
V = 3
@@ -45,12 +45,12 @@ class OutputTypes:
DistributionalQ = 10
class MiddlewareTypes:
class MiddlewareTypes(object):
LSTM = 1
FC = 2
class AgentParameters:
class AgentParameters(object):
agent = ''
# Architecture parameters
@@ -120,7 +120,7 @@ class AgentParameters:
share_statistics_between_workers = True
class EnvironmentParameters:
class EnvironmentParameters(object):
type = 'Doom'
level = 'basic'
observation_stack_size = 4
@@ -133,7 +133,7 @@ class EnvironmentParameters:
reward_clipping_max = None
class ExplorationParameters:
class ExplorationParameters(object):
# Exploration policies
policy = 'EGreedy'
evaluation_policy = 'Greedy'
@@ -167,7 +167,7 @@ class ExplorationParameters:
dt = 0.01
class GeneralParameters:
class GeneralParameters(object):
train = True
framework = Frameworks.TensorFlow
threads = 1
@@ -212,7 +212,7 @@ class GeneralParameters:
test_num_workers = 1
class VisualizationParameters:
class VisualizationParameters(object):
# Visualization parameters
record_video_every = 1000
video_path = '/home/llt_lab/temp/breakout-videos'

View File

@@ -19,7 +19,7 @@ from utils import *
from configurations import Preset
class EnvironmentWrapper:
class EnvironmentWrapper(object):
def __init__(self, tuning_parameters):
"""
:param tuning_parameters:

View File

@@ -19,7 +19,7 @@ from utils import *
from configurations import *
class ExplorationPolicy:
class ExplorationPolicy(object):
def __init__(self, tuning_parameters):
"""
:param tuning_parameters: A Preset class instance with all the running paramaters

View File

@@ -27,7 +27,7 @@ global failed_imports
failed_imports = []
class Colors:
class Colors(object):
PURPLE = '\033[95m'
CYAN = '\033[96m'
DARKCYAN = '\033[36m'
@@ -51,7 +51,7 @@ class Colors:
# prints to screen with a prefix identifying the origin of the print
class ScreenLogger:
class ScreenLogger(object):
def __init__(self, name):
self.name = name
@@ -85,7 +85,7 @@ class ScreenLogger:
return input("{}{}{}".format(Colors.BG_CYAN, title, Colors.END))
class BaseLogger:
class BaseLogger(object):
def __init__(self):
pass

View File

@@ -18,7 +18,7 @@ import numpy as np
from annoy import AnnoyIndex
class AnnoyDictionary:
class AnnoyDictionary(object):
def __init__(self, dict_size, key_width, new_value_shift_coefficient=0.1, batch_size=100, key_error_threshold=0.01):
self.max_size = dict_size
self.curr_size = 0

View File

@@ -19,7 +19,7 @@ import copy
from configurations import *
class Memory:
class Memory(object):
def __init__(self, tuning_parameters):
"""
:param tuning_parameters: A Preset class instance with all the running paramaters
@@ -43,7 +43,7 @@ class Memory:
pass
class Episode:
class Episode(object):
def __init__(self):
self.transitions = []
# a num_transitions x num_transitions table with the n step return in the n'th row
@@ -122,7 +122,7 @@ class Episode:
return batch
class Transition:
class Transition(object):
def __init__(self, state, action, reward, next_state, game_over):
self.state = copy.deepcopy(state)
self.state['observation'] = np.array(self.state['observation'], copy=False)

View File

@@ -24,7 +24,7 @@ from subprocess import call, Popen
killed_processes = []
class Enum:
class Enum(object):
def __init__(self):
pass
@@ -177,7 +177,7 @@ def threaded_cmd_line_run(run_cmd, id=-1):
return result
class Signal:
class Signal(object):
def __init__(self, name):
self.name = name
self.sample_count = 0