1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/memories/memory.py

136 lines
4.8 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import copy
from configurations import *
class Memory(object):
def __init__(self, tuning_parameters):
"""
:param tuning_parameters: A Preset class instance with all the running paramaters
:type tuning_parameters: Preset
"""
pass
def store(self, obj):
pass
def get(self, index):
pass
def length(self):
pass
def sample(self, size):
pass
def clean(self):
pass
class Episode(object):
def __init__(self):
self.transitions = []
# a num_transitions x num_transitions table with the n step return in the n'th row
self.returns_table = None
self._length = 0
def insert(self, transition):
self.transitions.append(transition)
self._length += 1
def is_empty(self):
return self.length() == 0
def length(self):
return self._length
def get_transition(self, transition_idx):
return self.transitions[transition_idx]
def get_last_transition(self):
return self.get_transition(-1)
def get_first_transition(self):
return self.get_transition(0)
def update_returns(self, discount, is_bootstrapped=False, n_step_return=-1):
if n_step_return == -1 or n_step_return > self.length():
n_step_return = self.length()
rewards = np.array([t.reward for t in self.transitions])
total_return = rewards.copy()
current_discount = discount
for i in range(1, n_step_return):
total_return += current_discount * np.pad(rewards[i:], (0, i), 'constant', constant_values=0)
current_discount *= discount
if is_bootstrapped:
bootstraps = np.array([np.squeeze(t.info['action_value']) for t in self.transitions[n_step_return:]])
total_return += current_discount * np.pad(bootstraps, (0, n_step_return), 'constant', constant_values=0)
for transition_idx in range(self.length()):
self.transitions[transition_idx].total_return = total_return[transition_idx]
def update_measurements_targets(self, num_steps):
if 'measurements' not in self.transitions[0].state:
return
measurements_size = self.transitions[0].state['measurements'].shape[-1]
total_return = sum([transition.reward for transition in self.transitions])
for transition_idx, transition in enumerate(self.transitions):
transition.info['future_measurements'] = np.zeros((num_steps, measurements_size))
for step in range(num_steps):
offset_idx = transition_idx + 2 ** step
if offset_idx >= self.length():
offset_idx = -1
transition.info['future_measurements'][step] = self.transitions[offset_idx].next_state['measurements'] - \
transition.state['measurements']
transition.info['total_episode_return'] = total_return
def update_actions_probabilities(self):
probability_product = 1
for transition_idx, transition in enumerate(self.transitions):
if 'action_probabilities' in transition.info.keys():
probability_product *= transition.info['action_probabilities']
for transition_idx, transition in enumerate(self.transitions):
transition.info['probability_product'] = probability_product
def get_returns_table(self):
return self.returns_table
def get_returns(self):
return [t.total_return for t in self.transitions]
def to_batch(self):
batch = []
for i in range(self.length()):
batch.append(self.get_transition(i))
return batch
class Transition(object):
def __init__(self, state, action, reward, next_state, game_over):
self.state = copy.deepcopy(state)
self.state['observation'] = np.array(self.state['observation'], copy=False)
self.action = action
self.reward = reward
self.total_return = None
self.next_state = copy.deepcopy(next_state)
self.next_state['observation'] = np.array(self.next_state['observation'], copy=False)
self.game_over = game_over
self.info = {}