mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
146 lines
5.4 KiB
Python
146 lines
5.4 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
import numpy as np
|
|
from bokeh.models import ColumnDataSource
|
|
|
|
from rl_coach.dashboard_components.signals import Signal
|
|
from rl_coach.dashboard_components.globals import x_axis, x_axis_options, show_spinner
|
|
|
|
|
|
class SignalsFileBase:
|
|
def __init__(self, plot):
|
|
self.plot = plot
|
|
self.full_csv_path = ""
|
|
self.dir = ""
|
|
self.filename = ""
|
|
self.signals_averaging_window = 1
|
|
self.show_bollinger_bands = False
|
|
self.csv = None
|
|
self.bokeh_source = None
|
|
self.bokeh_source_orig = None
|
|
self.last_modified = None
|
|
self.signals = {}
|
|
self.separate_files = False
|
|
self.last_reload_data_fix = False
|
|
|
|
def load_csv(self):
|
|
pass
|
|
|
|
def update_x_axis_index(self):
|
|
global x_axis
|
|
self.bokeh_source_orig.data['index'] = self.bokeh_source_orig.data[x_axis[0]]
|
|
self.bokeh_source.data['index'] = self.bokeh_source.data[x_axis[0]]
|
|
|
|
def toggle_y_axis(self, signal_name=None):
|
|
if signal_name and signal_name in self.signals.keys():
|
|
self.signals[signal_name].toggle_axis()
|
|
else:
|
|
for signal in self.signals.values():
|
|
if signal.selected:
|
|
signal.toggle_axis()
|
|
|
|
def update_source_and_signals(self):
|
|
# create bokeh data sources
|
|
self.bokeh_source_orig = ColumnDataSource(self.csv)
|
|
|
|
if self.bokeh_source is None:
|
|
self.bokeh_source = ColumnDataSource(self.csv)
|
|
self.update_x_axis_index()
|
|
else:
|
|
self.update_x_axis_index()
|
|
# smooth the data if necessary
|
|
self.change_averaging_window(self.signals_averaging_window, force=True)
|
|
|
|
# create all the signals
|
|
if len(self.signals.keys()) == 0:
|
|
self.signals = {}
|
|
unique_signal_names = []
|
|
for name in self.csv.columns:
|
|
if len(name.split('/')) == 1:
|
|
unique_signal_names.append(name)
|
|
else:
|
|
unique_signal_names.append('/'.join(name.split('/')[:-1]))
|
|
unique_signal_names = list(set(unique_signal_names))
|
|
for signal_name in unique_signal_names:
|
|
self.signals[signal_name] = Signal(signal_name, self, self.plot)
|
|
|
|
def load(self):
|
|
self.load_csv()
|
|
self.update_source_and_signals()
|
|
|
|
def reload_data(self):
|
|
# this function is a workaround to reload the data of all the signals
|
|
# if the data doesn't change, bokeh does not refresh the line
|
|
temp_data = self.bokeh_source.data.copy()
|
|
for col in self.bokeh_source.data.keys():
|
|
if not self.last_reload_data_fix:
|
|
temp_data[col] = temp_data[col][:-1]
|
|
self.last_reload_data_fix = not self.last_reload_data_fix
|
|
self.bokeh_source.data = temp_data
|
|
|
|
def change_averaging_window(self, new_size, force=False, signals=None):
|
|
if force or self.signals_averaging_window != new_size:
|
|
self.signals_averaging_window = new_size
|
|
win = np.ones(new_size) / new_size
|
|
temp_data = self.bokeh_source_orig.data.copy()
|
|
for col in self.bokeh_source.data.keys():
|
|
if col == 'index' or col in x_axis_options \
|
|
or (signals and not any(col in signal for signal in signals)):
|
|
temp_data[col] = temp_data[col][:-new_size]
|
|
continue
|
|
temp_data[col] = np.convolve(self.bokeh_source_orig.data[col], win, mode='same')[:-new_size]
|
|
self.bokeh_source.data = temp_data
|
|
|
|
# smooth bollinger bands
|
|
for signal in self.signals.values():
|
|
if signal.has_bollinger_bands:
|
|
signal.set_bands_source()
|
|
|
|
def hide_all_signals(self):
|
|
for signal_name in self.signals.keys():
|
|
self.set_signal_selection(signal_name, False)
|
|
|
|
def set_signal_selection(self, signal_name, val):
|
|
self.signals[signal_name].set_selected(val)
|
|
|
|
def change_bollinger_bands_state(self, new_state):
|
|
self.show_bollinger_bands = new_state
|
|
for signal in self.signals.values():
|
|
signal.change_bollinger_bands_state(new_state)
|
|
|
|
def file_was_modified_on_disk(self):
|
|
pass
|
|
|
|
def get_range_of_selected_signals_on_axis(self, axis, selected_signal=None):
|
|
max_val = -float('inf')
|
|
min_val = float('inf')
|
|
for signal in self.signals.values():
|
|
if (selected_signal and signal.name == selected_signal) or (signal.selected and signal.axis == axis):
|
|
max_val = max(max_val, signal.max_val)
|
|
min_val = min(min_val, signal.min_val)
|
|
return min_val, max_val
|
|
|
|
def get_selected_signals(self):
|
|
signals = []
|
|
for signal in self.signals.values():
|
|
if signal.selected:
|
|
signals.append(signal)
|
|
return signals
|
|
|
|
def show_files_separately(self, val):
|
|
pass |