1
0
mirror of https://github.com/gryf/coach.git synced 2026-02-11 03:05:57 +01:00

Removed carla environ

This commit is contained in:
Roman Dobosz
2018-05-10 09:24:40 +02:00
parent cd6376f821
commit 7cbbb8f718
6 changed files with 5 additions and 366 deletions

View File

@@ -17,7 +17,6 @@ import argparse
import atexit
import json
import os
import re
import subprocess
import sys
import time
@@ -25,8 +24,8 @@ import time
import tensorflow as tf
from coach import agents # noqa
from coach import configurations as conf
from coach import environments
from coach.environments import gym_environment_wrapper as gym_w
from coach import logger
from coach import presets
from coach import utils
@@ -214,7 +213,10 @@ def main():
# Single-thread runs
tuning_parameters.task_index = 0
env_instance = environments.create_environment(tuning_parameters) # noqa
# create environment
gym_w.GymEnvironmentWrapper(tuning_parameters)
agent = eval('agents.' + tuning_parameters.agent.type +
'(env_instance, tuning_parameters)')

View File

@@ -295,26 +295,6 @@ class Atari(EnvironmentParameters):
crop_observation = False # in the original paper the observation is cropped but not in the Nature paper
class Carla(EnvironmentParameters):
type = 'Carla'
frame_skip = 1
observation_stack_size = 4
desired_observation_height = 128
desired_observation_width = 180
normalize_observation = False
server_height = 256
server_width = 360
config = 'environments/CarlaSettings.ini'
level = 'town1'
verbose = True
stereo = False
semantic_segmentation = False
depth = False
episode_max_time = 100000 # miliseconds for each episode
continuous_to_bool_threshold = 0.5
allow_braking = False
class NStepQ(AgentParameters):
type = 'NStepQAgent'
input_types = {'observation': InputTypes.Observation}

View File

@@ -1,62 +0,0 @@
[CARLA/Server]
; If set to false, a mock controller will be used instead of waiting for a real
; client to connect.
UseNetworking=true
; Ports to use for the server-client communication. This can be overridden by
; the command-line switch `-world-port=N`, write and read ports will be set to
; N+1 and N+2 respectively.
WorldPort=2000
; Time-out in milliseconds for the networking operations.
ServerTimeOut=10000000000
; In synchronous mode, CARLA waits every frame until the control from the client
; is received.
SynchronousMode=true
; Send info about every non-player agent in the scene every frame, the
; information is attached to the measurements message. This includes other
; vehicles, pedestrians and traffic signs. Disabled by default to improve
; performance.
SendNonPlayerAgentsInfo=false
[CARLA/LevelSettings]
; Path of the vehicle class to be used for the player. Leave empty for default.
; Paths follow the pattern "/Game/Blueprints/Vehicles/Mustang/Mustang.Mustang_C"
PlayerVehicle=
; Number of non-player vehicles to be spawned into the level.
NumberOfVehicles=15
; Number of non-player pedestrians to be spawned into the level.
NumberOfPedestrians=30
; Index of the weather/lighting presets to use. If negative, the default presets
; of the map will be used.
WeatherId=1
; Seeds for the pseudo-random number generators.
SeedVehicles=123456789
SeedPedestrians=123456789
[CARLA/SceneCapture]
; Names of the cameras to be attached to the player, comma-separated, each of
; them should be defined in its own subsection. E.g., Uncomment next line to add
; a camera called MyCamera to the vehicle
Cameras=CameraRGB
; Now, every camera we added needs to be defined it in its own subsection.
[CARLA/SceneCapture/CameraRGB]
; Post-processing effect to be applied. Valid values:
; * None No effects applied.
; * SceneFinal Post-processing present at scene (bloom, fog, etc).
; * Depth Depth map ground-truth only.
; * SemanticSegmentation Semantic segmentation ground-truth only.
PostProcessing=SceneFinal
; Size of the captured image in pixels.
ImageSizeX=360
ImageSizeY=256
; Camera (horizontal) field of view in degrees.
CameraFOV=90
; Position of the camera relative to the car in centimeters.
CameraPositionX=200
CameraPositionY=0
CameraPositionZ=140
; Rotation of the camera relative to the car in degrees.
CameraRotationPitch=0
CameraRotationRoll=0
CameraRotationYaw=0

View File

@@ -13,17 +13,3 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from coach.environments.gym_environment_wrapper import GymEnvironmentWrapper
from coach.environments.carla_environment_wrapper import CarlaEnvironmentWrapper
from coach import utils
class EnvTypes(utils.Enum):
Gym = "GymEnvironmentWrapper"
Carla = "CarlaEnvironmentWrapper"
def create_environment(tuning_parameters):
env_type_name, env_type = EnvTypes().verify(tuning_parameters.env.type)
env = eval(env_type)(tuning_parameters)
return env

View File

@@ -1,229 +0,0 @@
import logging
import os
import signal
import subprocess
import sys
import numpy as np
from coach import logger
try:
if 'CARLA_ROOT' in os.environ:
sys.path.append(os.path.join(os.environ.get('CARLA_ROOT'),
'PythonClient'))
from carla import client as carla_client
from carla import settings as carla_settings
from carla import sensor as carla_sensor
except ImportError:
logger.failed_imports.append("CARLA")
from coach.environments import environment_wrapper as ew
from coach import utils
# enum of the available levels and their path
class CarlaLevel(utils.Enum):
TOWN1 = "/Game/Maps/Town01"
TOWN2 = "/Game/Maps/Town02"
key_map = {
'BRAKE': (274,), # down arrow
'GAS': (273,), # up arrow
'TURN_LEFT': (276,), # left arrow
'TURN_RIGHT': (275,), # right arrow
'GAS_AND_TURN_LEFT': (273, 276),
'GAS_AND_TURN_RIGHT': (273, 275),
'BRAKE_AND_TURN_LEFT': (274, 276),
'BRAKE_AND_TURN_RIGHT': (274, 275),
}
class CarlaEnvironmentWrapper(ew.EnvironmentWrapper):
def __init__(self, tuning_parameters):
ew.EnvironmentWrapper.__init__(self, tuning_parameters)
self.tp = tuning_parameters
# server configuration
self.server_height = self.tp.env.server_height
self.server_width = self.tp.env.server_width
self.port = utils.get_open_port()
self.host = 'localhost'
self.map = CarlaLevel().get(self.tp.env.level)
# client configuration
self.verbose = self.tp.env.verbose
self.depth = self.tp.env.depth
self.stereo = self.tp.env.stereo
self.semantic_segmentation = self.tp.env.semantic_segmentation
self.height = self.server_height * (1 + int(self.depth) + int(self.semantic_segmentation))
self.width = self.server_width * (1 + int(self.stereo))
self.size = (self.width, self.height)
self.config = self.tp.env.config
if self.config:
# load settings from file
with open(self.config, 'r') as fp:
self.settings = fp.read()
else:
# hard coded settings
self.settings = carla_settings.CarlaSettings()
self.settings.set(
SynchronousMode=True,
SendNonPlayerAgentsInfo=False,
NumberOfVehicles=15,
NumberOfPedestrians=30,
WeatherId=1)
self.settings.randomize_seeds()
# add cameras
camera = carla_sensor.Camera('CameraRGB')
camera.set_image_size(self.width, self.height)
camera.set_position(200, 0, 140)
camera.set_rotation(0, 0, 0)
self.settings.add_sensor(camera)
# open the server
self.server = self._open_server()
logging.disable(40)
# open the client
self.game = carla_client.CarlaClient(self.host, self.port, timeout=99999999)
self.game.connect()
scene = self.game.load_settings(self.settings)
# get available start positions
positions = scene.player_start_spots
self.num_pos = len(positions)
self.iterator_start_positions = 0
# action space
self.discrete_controls = False
self.action_space_size = 2
self.action_space_high = [1, 1]
self.action_space_low = [-1, -1]
self.action_space_abs_range = np.maximum(np.abs(self.action_space_low), np.abs(self.action_space_high))
self.steering_strength = 0.5
self.gas_strength = 1.0
self.brake_strength = 0.5
self.actions = {0: [0., 0.],
1: [0., -self.steering_strength],
2: [0., self.steering_strength],
3: [self.gas_strength, 0.],
4: [-self.brake_strength, 0],
5: [self.gas_strength, -self.steering_strength],
6: [self.gas_strength, self.steering_strength],
7: [self.brake_strength, -self.steering_strength],
8: [self.brake_strength, self.steering_strength]}
self.actions_description = ['NO-OP', 'TURN_LEFT', 'TURN_RIGHT', 'GAS', 'BRAKE',
'GAS_AND_TURN_LEFT', 'GAS_AND_TURN_RIGHT',
'BRAKE_AND_TURN_LEFT', 'BRAKE_AND_TURN_RIGHT']
for idx, action in enumerate(self.actions_description):
for key in key_map.keys():
if action == key:
self.key_to_action[key_map[key]] = idx
self.num_speedup_steps = 30
# measurements
self.measurements_size = (1,)
self.autopilot = None
# env initialization
self.reset(True)
# render
if self.is_rendered:
image = self.get_rendered_image()
self.renderer.create_screen(image.shape[1], image.shape[0])
def _open_server(self):
log_path = os.path.join(logger.logger.experiments_path, "CARLA_LOG_{}.txt".format(self.port))
with open(log_path, "wb") as out:
cmd = [os.path.join(os.environ.get('CARLA_ROOT'), 'CarlaUE4.sh'), self.map,
"-benchmark", "-carla-server", "-fps=10", "-world-port={}".format(self.port),
"-windowed -ResX={} -ResY={}".format(self.server_width, self.server_height),
"-carla-no-hud"]
if self.config:
cmd.append("-carla-settings={}".format(self.config))
p = subprocess.Popen(cmd, stdout=out, stderr=out)
return p
def _close_server(self):
os.killpg(os.getpgid(self.server.pid), signal.SIGKILL)
def _update_state(self):
# get measurements and observations
measurements = []
while type(measurements) == list:
measurements, sensor_data = self.game.read_data()
self.location = (measurements.player_measurements.transform.location.x,
measurements.player_measurements.transform.location.y,
measurements.player_measurements.transform.location.z)
is_collision = measurements.player_measurements.collision_vehicles != 0 \
or measurements.player_measurements.collision_pedestrians != 0 \
or measurements.player_measurements.collision_other != 0
speed_reward = measurements.player_measurements.forward_speed - 1
if speed_reward > 30.:
speed_reward = 30.
self.reward = speed_reward \
- (measurements.player_measurements.intersection_otherlane * 5) \
- (measurements.player_measurements.intersection_offroad * 5) \
- is_collision * 100 \
- np.abs(self.control.steer) * 10
# update measurements
self.state = {
'observation': sensor_data['CameraRGB'].data,
'measurements': [measurements.player_measurements.forward_speed],
}
self.autopilot = measurements.player_measurements.autopilot_control
# action_p = ['%.2f' % member for member in [self.control.throttle, self.control.steer]]
# screen.success('REWARD: %.2f, ACTIONS: %s' % (self.reward, action_p))
if (measurements.game_timestamp >= self.tp.env.episode_max_time) or is_collision:
# screen.success('EPISODE IS DONE. GameTime: {}, Collision: {}'.format(str(measurements.game_timestamp),
# str(is_collision)))
self.done = True
def _take_action(self, action_idx):
if type(action_idx) == int:
action = self.actions[action_idx]
else:
action = action_idx
self.last_action_idx = action
self.control = carla_client.VehicleControl()
self.control.throttle = np.clip(action[0], 0, 1)
self.control.steer = np.clip(action[1], -1, 1)
self.control.brake = np.abs(np.clip(action[0], -1, 0))
if not self.tp.env.allow_braking:
self.control.brake = 0
self.control.hand_brake = False
self.control.reverse = False
self.game.send_control(self.control)
def _restart_environment_episode(self, force_environment_reset=False):
self.iterator_start_positions += 1
if self.iterator_start_positions >= self.num_pos:
self.iterator_start_positions = 0
try:
self.game.start_episode(self.iterator_start_positions)
except:
self.game.connect()
self.game.start_episode(self.iterator_start_positions)
# start the game with some initial speed
state = None
for i in range(self.num_speedup_steps):
state = self.step([1.0, 0])['state']
self.state = state
return state

View File

@@ -1151,44 +1151,6 @@ class Breakout_A3C(conf.Preset):
self.agent.middleware_type = conf.MiddlewareTypes.FC
class Carla_A3C(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.ActorCritic, conf.Carla, conf.EntropyExploration)
self.agent.embedder_complexity = conf.EmbedderComplexity.Deep
self.agent.policy_gradient_rescaler = 'GAE'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
# self.env.reward_scaling = 1.0e9
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 30
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.01
self.clip_gradients = 40
self.agent.middleware_type = conf.MiddlewareTypes.FC
class Carla_DDPG(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.DDPG, conf.Carla, conf.OUExploration)
self.agent.embedder_complexity = conf.EmbedderComplexity.Deep
self.learning_rate = 0.0001
self.num_heatup_steps = 1000
self.agent.num_consecutive_training_steps = 5
class Carla_BC(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.BC, conf.Carla, conf.ExplorationParameters)
self.agent.embedder_complexity = conf.EmbedderComplexity.Deep
self.agent.load_memory_from_file_path = 'datasets/carla_town1.p'
self.learning_rate = 0.0005
self.num_heatup_steps = 0
self.evaluation_episodes = 5
self.batch_size = 120
self.evaluate_every_x_training_iterations = 5000
class MontezumaRevenge_BC(conf.Preset):
def __init__(self):
conf.Preset.__init__(self, conf.BC, conf.Atari, conf.ExplorationParameters)