mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 19:50:17 +01:00
* SAC algorithm * SAC - updates to agent (learn_from_batch), sac_head and sac_q_head to fix problem in gradient calculation. Now SAC agents is able to train. gym_environment - fixing an error in access to gym.spaces * Soft Actor Critic - code cleanup * code cleanup * V-head initialization fix * SAC benchmarks * SAC Documentation * typo fix * documentation fixes * documentation and version update * README typo
72 lines
3.0 KiB
Python
72 lines
3.0 KiB
Python
from rl_coach.agents.soft_actor_critic_agent import SoftActorCriticAgentParameters
|
|
from rl_coach.architectures.layers import Dense
|
|
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
|
from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps
|
|
from rl_coach.filters.filter import InputFilter
|
|
from rl_coach.filters.reward.reward_rescale_filter import RewardRescaleFilter
|
|
from rl_coach.environments.environment import SingleLevelSelection
|
|
from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2
|
|
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
|
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
|
|
|
|
|
####################
|
|
# Graph Scheduling #
|
|
####################
|
|
|
|
# see graph_manager.py for possible schedule parameters
|
|
schedule_params = ScheduleParameters()
|
|
schedule_params.improve_steps = EnvironmentSteps(3000000)
|
|
schedule_params.steps_between_evaluation_periods = EnvironmentSteps(1000)
|
|
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
|
|
schedule_params.heatup_steps = EnvironmentSteps(10000)
|
|
|
|
|
|
#########
|
|
# Agent #
|
|
#########
|
|
agent_params = SoftActorCriticAgentParameters()
|
|
# override default parameters:
|
|
# value (v) networks parameters
|
|
agent_params.network_wrappers['v'].batch_size = 256
|
|
agent_params.network_wrappers['v'].learning_rate = 0.0003
|
|
agent_params.network_wrappers['v'].middleware_parameters.scheme = [Dense(256)]
|
|
|
|
# critic (q) network parameters
|
|
agent_params.network_wrappers['q'].heads_parameters[0].network_layers_sizes = (256, 256)
|
|
agent_params.network_wrappers['q'].batch_size = 256
|
|
agent_params.network_wrappers['q'].learning_rate = 0.0003
|
|
|
|
# actor (policy) network parameters
|
|
agent_params.network_wrappers['policy'].batch_size = 256
|
|
agent_params.network_wrappers['policy'].learning_rate = 0.0003
|
|
agent_params.network_wrappers['policy'].middleware_parameters.scheme = [Dense(256)]
|
|
|
|
# Input Filter
|
|
# SAC requires reward scaling for Mujoco environments.
|
|
# according to the paper:
|
|
# Hopper, Walker-2d, HalfCheetah, Ant - requires scaling of 5
|
|
# Humanoid - requires scaling of 20
|
|
|
|
agent_params.input_filter = InputFilter()
|
|
agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(5))
|
|
|
|
###############
|
|
# Environment #
|
|
###############
|
|
env_params = GymVectorEnvironment(level=SingleLevelSelection(mujoco_v2))
|
|
|
|
########
|
|
# Test #
|
|
########
|
|
preset_validation_params = PresetValidationParameters()
|
|
preset_validation_params.test = True
|
|
preset_validation_params.min_reward_threshold = 400
|
|
preset_validation_params.max_episodes_to_achieve_reward = 2200
|
|
preset_validation_params.reward_test_level = 'inverted_pendulum'
|
|
preset_validation_params.trace_test_levels = ['inverted_pendulum', 'hopper']
|
|
|
|
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
|
schedule_params=schedule_params, vis_params=VisualizationParameters(),
|
|
preset_validation_params=preset_validation_params)
|