1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/agents/policy_optimization_agent.py
Itai Caspi 125c7ee38d Release 0.9
Main changes are detailed below:

New features -
* CARLA 0.7 simulator integration
* Human control of the game play
* Recording of human game play and storing / loading the replay buffer
* Behavioral cloning agent and presets
* Golden tests for several presets
* Selecting between deep / shallow image embedders
* Rendering through pygame (with some boost in performance)

API changes -
* Improved environment wrapper API
* Added an evaluate flag to allow convenient evaluation of existing checkpoints
* Improve frameskip definition in Gym

Bug fixes -
* Fixed loading of checkpoints for agents with more than one network
* Fixed the N Step Q learning agent python3 compatibility
2017-12-19 19:27:16 +02:00

122 lines
5.2 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agents.agent import *
from memories.memory import Episode
class PolicyGradientRescaler(Enum):
TOTAL_RETURN = 0
FUTURE_RETURN = 1
FUTURE_RETURN_NORMALIZED_BY_EPISODE = 2
FUTURE_RETURN_NORMALIZED_BY_TIMESTEP = 3 # baselined
Q_VALUE = 4
A_VALUE = 5
TD_RESIDUAL = 6
DISCOUNTED_TD_RESIDUAL = 7
GAE = 8
class PolicyOptimizationAgent(Agent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0, create_target_network=False):
Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
self.main_network = NetworkWrapper(tuning_parameters, create_target_network, self.has_global, 'main',
self.replicated_device, self.worker_device)
self.networks.append(self.main_network)
self.policy_gradient_rescaler = PolicyGradientRescaler().get(self.tp.agent.policy_gradient_rescaler)
# statistics for variance reduction
self.last_gradient_update_step_idx = 0
self.max_episode_length = 100000
self.mean_return_over_multiple_episodes = np.zeros(self.max_episode_length)
self.num_episodes_where_step_has_been_seen = np.zeros(self.max_episode_length)
self.entropy = Signal('Entropy')
self.signals.append(self.entropy)
def log_to_screen(self, phase):
# log to screen
if self.current_episode > 0:
screen.log_dict(
OrderedDict([
("Worker", self.task_id),
("Episode", self.current_episode),
("total reward", self.total_reward_in_current_episode),
("steps", self.total_steps_counter),
("training iteration", self.training_iteration)
]),
prefix=phase
)
def update_episode_statistics(self, episode):
episode_discounted_returns = []
for i in range(episode.length()):
transition = episode.get_transition(i)
episode_discounted_returns.append(transition.total_return)
self.num_episodes_where_step_has_been_seen[i] += 1
self.mean_return_over_multiple_episodes[i] -= self.mean_return_over_multiple_episodes[i] / \
self.num_episodes_where_step_has_been_seen[i]
self.mean_return_over_multiple_episodes[i] += transition.total_return / \
self.num_episodes_where_step_has_been_seen[i]
self.mean_discounted_return = np.mean(episode_discounted_returns)
self.std_discounted_return = np.std(episode_discounted_returns)
def train(self):
if self.memory.length() == 0:
return 0
episode = self.memory.get_episode(0)
# check if we should calculate gradients or skip
episode_ended = self.memory.num_complete_episodes() >= 1
num_steps_passed_since_last_update = episode.length() - self.last_gradient_update_step_idx
is_t_max_steps_passed = num_steps_passed_since_last_update >= self.tp.agent.num_steps_between_gradient_updates
if not (is_t_max_steps_passed or episode_ended):
return 0
total_loss = 0
if num_steps_passed_since_last_update > 0:
# we need to update the returns of the episode until now
episode.update_returns(self.tp.agent.discount)
# get t_max transitions or less if the we got to a terminal state
# will be used for both actor-critic and vanilla PG.
# # In order to get full episodes, Vanilla PG will set the end_idx to a very big value.
transitions = []
start_idx = self.last_gradient_update_step_idx
end_idx = episode.length()
for idx in range(start_idx, end_idx):
transitions.append(episode.get_transition(idx))
self.last_gradient_update_step_idx = end_idx
# update the statistics for the variance reduction techniques
if self.tp.agent.type == 'PolicyGradientsAgent':
self.update_episode_statistics(episode)
# accumulate the gradients and apply them once in every apply_gradients_every_x_episodes episodes
total_loss = self.learn_from_batch(transitions)
if self.current_episode % self.tp.agent.apply_gradients_every_x_episodes == 0:
self.main_network.apply_gradients_and_sync_networks()
# move the pointer to the next episode start and discard the episode. we use it only once
if episode_ended:
self.memory.remove_episode(0)
self.last_gradient_update_step_idx = 0
return total_loss