mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
117 lines
4.4 KiB
Python
117 lines
4.4 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
from collections import OrderedDict
|
|
from typing import Union
|
|
|
|
import pygame
|
|
from pandas import to_pickle
|
|
|
|
from rl_coach.agents.agent import Agent
|
|
from rl_coach.agents.bc_agent import BCNetworkParameters
|
|
from rl_coach.architectures.tensorflow_components.heads.policy_head import PolicyHeadParameters
|
|
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
|
|
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, EmbedderScheme, \
|
|
AgentParameters
|
|
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters
|
|
from rl_coach.core_types import ActionInfo
|
|
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
|
from rl_coach.logger import screen
|
|
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
|
|
|
|
|
|
class HumanAlgorithmParameters(AlgorithmParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
|
|
class HumanNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
|
|
self.input_embedders_parameters['observation'].scheme = EmbedderScheme.Medium
|
|
self.middleware_parameters = FCMiddlewareParameters()
|
|
self.heads_parameters = [PolicyHeadParameters()]
|
|
self.loss_weights = [1.0]
|
|
self.optimizer_type = 'Adam'
|
|
self.batch_size = 32
|
|
self.replace_mse_with_huber_loss = False
|
|
self.create_target_network = False
|
|
|
|
|
|
class HumanAgentParameters(AgentParameters):
|
|
def __init__(self):
|
|
super().__init__(algorithm=HumanAlgorithmParameters(),
|
|
exploration=EGreedyParameters(),
|
|
memory=EpisodicExperienceReplayParameters(),
|
|
networks={"main": BCNetworkParameters()})
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.human_agent:HumanAgent'
|
|
|
|
|
|
class HumanAgent(Agent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
|
|
self.clock = pygame.time.Clock()
|
|
self.max_fps = int(self.ap.visualization.max_fps_for_human_control)
|
|
self.env = None
|
|
|
|
def init_environment_dependent_modules(self):
|
|
super().init_environment_dependent_modules()
|
|
self.env = self.parent_level_manager._real_environment
|
|
screen.log_title("Human Control Mode")
|
|
available_keys = self.env.get_available_keys()
|
|
if available_keys:
|
|
screen.log("Use keyboard keys to move. Press escape to quit. Available keys:")
|
|
screen.log("")
|
|
for action, key in self.env.get_available_keys():
|
|
screen.log("\t- {}: {}".format(action, key))
|
|
screen.separator()
|
|
|
|
def train(self):
|
|
return 0
|
|
|
|
def choose_action(self, curr_state):
|
|
action = ActionInfo(self.env.get_action_from_user(), action_value=0)
|
|
action = self.output_filter.reverse_filter(action)
|
|
|
|
# keep constant fps
|
|
self.clock.tick(self.max_fps)
|
|
|
|
if not self.env.renderer.is_open:
|
|
self.save_replay_buffer_and_exit()
|
|
|
|
return action
|
|
|
|
def save_replay_buffer_and_exit(self):
|
|
replay_buffer_path = os.path.join(self.agent_logger.experiments_path, 'replay_buffer.p')
|
|
self.memory.tp = None
|
|
to_pickle(self.memory, replay_buffer_path)
|
|
screen.log_title("Replay buffer was stored in {}".format(replay_buffer_path))
|
|
exit()
|
|
|
|
def log_to_screen(self):
|
|
# log to screen
|
|
log = OrderedDict()
|
|
log["Episode"] = self.current_episode
|
|
log["Total reward"] = round(self.total_reward_in_current_episode, 2)
|
|
log["Steps"] = self.total_steps_counter
|
|
screen.log_dict(log, prefix="Recording")
|