mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
57 lines
2.9 KiB
Python
57 lines
2.9 KiB
Python
from rl_coach.agents.ddpg_agent import DDPGAgentParameters
|
|
from rl_coach.architectures.tensorflow_components.architecture import Dense
|
|
from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, PresetValidationParameters
|
|
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
|
|
from rl_coach.environments.control_suite_environment import ControlSuiteEnvironmentParameters, control_suite_envs
|
|
from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod, SingleLevelSelection
|
|
from rl_coach.environments.gym_environment import MujocoInputFilter
|
|
from rl_coach.filters.reward.reward_rescale_filter import RewardRescaleFilter
|
|
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
|
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
|
|
|
####################
|
|
# Graph Scheduling #
|
|
####################
|
|
|
|
schedule_params = ScheduleParameters()
|
|
schedule_params.improve_steps = TrainingSteps(10000000000)
|
|
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(20)
|
|
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
|
|
schedule_params.heatup_steps = EnvironmentSteps(1000)
|
|
|
|
#########
|
|
# Agent #
|
|
#########
|
|
agent_params = DDPGAgentParameters()
|
|
agent_params.network_wrappers['actor'].input_embedders_parameters['measurements'] = \
|
|
agent_params.network_wrappers['actor'].input_embedders_parameters.pop('observation')
|
|
agent_params.network_wrappers['critic'].input_embedders_parameters['measurements'] = \
|
|
agent_params.network_wrappers['critic'].input_embedders_parameters.pop('observation')
|
|
agent_params.network_wrappers['actor'].input_embedders_parameters['measurements'].scheme = [Dense([300])]
|
|
agent_params.network_wrappers['actor'].middleware_parameters.scheme = [Dense([200])]
|
|
agent_params.network_wrappers['critic'].input_embedders_parameters['measurements'].scheme = [Dense([400])]
|
|
agent_params.network_wrappers['critic'].middleware_parameters.scheme = [Dense([300])]
|
|
agent_params.network_wrappers['critic'].input_embedders_parameters['action'].scheme = EmbedderScheme.Empty
|
|
agent_params.input_filter = MujocoInputFilter()
|
|
agent_params.input_filter.add_reward_filter("rescale", RewardRescaleFilter(1/10.))
|
|
|
|
###############
|
|
# Environment #
|
|
###############
|
|
env_params = ControlSuiteEnvironmentParameters()
|
|
env_params.level = SingleLevelSelection(control_suite_envs)
|
|
|
|
vis_params = VisualizationParameters()
|
|
vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]
|
|
vis_params.dump_mp4 = False
|
|
|
|
########
|
|
# Test #
|
|
########
|
|
preset_validation_params = PresetValidationParameters()
|
|
preset_validation_params.trace_test_levels = ['cartpole:swingup', 'hopper:hop']
|
|
|
|
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
|
schedule_params=schedule_params, vis_params=vis_params,
|
|
preset_validation_params=preset_validation_params)
|