1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/architectures/neon_components/architecture.py
Roman Dobosz 1b095aeeca Cleanup imports.
Till now, most of the modules were importing all of the module objects
(variables, classes, functions, other imports) into module namespace,
which potentially could (and was) cause of unintentional use of class or
methods, which was indirect imported.

With this patch, all the star imports were substituted with top-level
module, which provides desired class or function.

Besides, all imports where sorted (where possible) in a way pep8[1]
suggests - first are imports from standard library, than goes third
party imports (like numpy, tensorflow etc) and finally coach modules.
All of those sections are separated by one empty line.

[1] https://www.python.org/dev/peps/pep-0008/#imports
2018-04-13 09:58:40 +02:00

127 lines
4.3 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ngraph as ng
import numpy as np
from architectures import architecture
import utils
class NeonArchitecture(architecture.Architecture):
def __init__(self, tuning_parameters, name="", global_network=None, network_is_local=True):
architecture.Architecture.__init__(self, tuning_parameters, name)
assert tuning_parameters.agent.neon_support, 'Neon is not supported for this agent'
self.clip_error = tuning_parameters.clip_gradients
self.total_loss = None
self.epoch = 0
self.inputs = []
self.outputs = []
self.targets = []
self.losses = []
self.transformer = tuning_parameters.sess
self.network = self.get_model(tuning_parameters)
self.accumulated_gradients = []
# training and inference ops
train_output = ng.sequential([
self.optimizer(self.total_loss),
self.total_loss
])
placeholders = self.inputs + self.targets
self.train_op = self.transformer.add_computation(
ng.computation(
train_output, *placeholders
)
)
self.predict_op = self.transformer.add_computation(
ng.computation(
self.outputs, self.inputs[0]
)
)
# update weights from array op
self.weights = [ng.placeholder(w.axes) for w in self.total_loss.variables()]
self.set_weights_ops = []
for target_variable, variable in zip(self.total_loss.variables(), self.weights):
self.set_weights_ops.append(self.transformer.add_computation(
ng.computation(
ng.assign(target_variable, variable), variable
)
))
# get weights op
self.get_variables = self.transformer.add_computation(
ng.computation(
self.total_loss.variables()
)
)
def predict(self, inputs):
batch_size = inputs.shape[0]
# move batch axis to the end
inputs = inputs.swapaxes(0, -1)
prediction = self.predict_op(inputs) # TODO: problem with multiple inputs
if type(prediction) != tuple:
prediction = (prediction)
# process all the outputs from the network
output = []
for p in prediction:
output.append(p.transpose()[:batch_size].copy())
# if there is only one output then we don't need a list
if len(output) == 1:
output = output[0]
return output
def train_on_batch(self, inputs, targets):
loss = self.accumulate_gradients(inputs, targets)
self.apply_and_reset_gradients(self.accumulated_gradients)
return loss
def get_weights(self):
return self.get_variables()
def set_weights(self, weights, rate=1.0):
if rate != 1:
current_weights = self.get_weights()
updated_weights = [(1 - rate) * t + rate * o for t, o in zip(current_weights, weights)]
else:
updated_weights = weights
for update_function, variable in zip(self.set_weights_ops, updated_weights):
update_function(variable)
def accumulate_gradients(self, inputs, targets):
# Neon doesn't currently allow separating the grads calculation and grad apply operations
# so this feature is not currently available. instead we do a full training iteration
inputs = utils.force_list(inputs)
targets = utils.force_list(targets)
for idx, input in enumerate(inputs):
inputs[idx] = input.swapaxes(0, -1)
for idx, target in enumerate(targets):
targets[idx] = np.rollaxis(target, 0, len(target.shape))
all_inputs = inputs + targets
loss = np.mean(self.train_op(*all_inputs))
return [loss]