mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
122 lines
5.5 KiB
Python
122 lines
5.5 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
|
|
from rl_coach.agents.categorical_dqn_agent import CategoricalDQNAlgorithmParameters, \
|
|
CategoricalDQNAgent, CategoricalDQNAgentParameters
|
|
from rl_coach.agents.dqn_agent import DQNNetworkParameters
|
|
from rl_coach.architectures.head_parameters import RainbowQHeadParameters
|
|
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
|
|
from rl_coach.base_parameters import MiddlewareScheme
|
|
from rl_coach.exploration_policies.parameter_noise import ParameterNoiseParameters
|
|
from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplayParameters, \
|
|
PrioritizedExperienceReplay
|
|
|
|
|
|
class RainbowDQNNetworkParameters(DQNNetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.heads_parameters = [RainbowQHeadParameters()]
|
|
self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Empty)
|
|
|
|
|
|
class RainbowDQNAlgorithmParameters(CategoricalDQNAlgorithmParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.n_step = 3
|
|
|
|
# needed for n-step updates to work. i.e. waiting for a full episode to be closed before storing each transition
|
|
self.store_transitions_only_when_episodes_are_terminated = True
|
|
|
|
|
|
class RainbowDQNAgentParameters(CategoricalDQNAgentParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.algorithm = RainbowDQNAlgorithmParameters()
|
|
self.exploration = ParameterNoiseParameters(self)
|
|
self.memory = PrioritizedExperienceReplayParameters()
|
|
self.network_wrappers = {"main": RainbowDQNNetworkParameters()}
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.rainbow_dqn_agent:RainbowDQNAgent'
|
|
|
|
|
|
# Rainbow Deep Q Network - https://arxiv.org/abs/1710.02298
|
|
# Agent implementation is composed of:
|
|
# 1. NoisyNets
|
|
# 2. C51
|
|
# 3. Prioritized ER
|
|
# 4. DDQN
|
|
# 5. Dueling DQN
|
|
# 6. N-step returns
|
|
|
|
class RainbowDQNAgent(CategoricalDQNAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
|
|
def learn_from_batch(self, batch):
|
|
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
|
|
|
ddqn_selected_actions = np.argmax(self.distribution_prediction_to_q_values(
|
|
self.networks['main'].online_network.predict(batch.next_states(network_keys))), axis=1)
|
|
|
|
# for the action we actually took, the error is calculated by the atoms distribution
|
|
# for all other actions, the error is 0
|
|
distributional_q_st_plus_n, TD_targets = self.networks['main'].parallel_prediction([
|
|
(self.networks['main'].target_network, batch.next_states(network_keys)),
|
|
(self.networks['main'].online_network, batch.states(network_keys))
|
|
])
|
|
|
|
# only update the action that we have actually done in this transition (using the Double-DQN selected actions)
|
|
target_actions = ddqn_selected_actions
|
|
m = np.zeros((self.ap.network_wrappers['main'].batch_size, self.z_values.size))
|
|
|
|
batches = np.arange(self.ap.network_wrappers['main'].batch_size)
|
|
for j in range(self.z_values.size):
|
|
# we use batch.info('should_bootstrap_next_state') instead of (1 - batch.game_overs()) since with n-step,
|
|
# we will not bootstrap for the last n-step transitions in the episode
|
|
tzj = np.fmax(np.fmin(batch.n_step_discounted_rewards() + batch.info('should_bootstrap_next_state') *
|
|
(self.ap.algorithm.discount ** self.ap.algorithm.n_step) * self.z_values[j],
|
|
self.z_values[-1]), self.z_values[0])
|
|
bj = (tzj - self.z_values[0])/(self.z_values[1] - self.z_values[0])
|
|
u = (np.ceil(bj)).astype(int)
|
|
l = (np.floor(bj)).astype(int)
|
|
m[batches, l] += (distributional_q_st_plus_n[batches, target_actions, j] * (u - bj))
|
|
m[batches, u] += (distributional_q_st_plus_n[batches, target_actions, j] * (bj - l))
|
|
|
|
# total_loss = cross entropy between actual result above and predicted result for the given action
|
|
TD_targets[batches, batch.actions()] = m
|
|
|
|
# update errors in prioritized replay buffer
|
|
importance_weights = batch.info('weight') if isinstance(self.memory, PrioritizedExperienceReplay) else None
|
|
|
|
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets,
|
|
importance_weights=importance_weights)
|
|
|
|
total_loss, losses, unclipped_grads = result[:3]
|
|
|
|
# TODO: fix this spaghetti code
|
|
if isinstance(self.memory, PrioritizedExperienceReplay):
|
|
errors = losses[0][np.arange(batch.size), batch.actions()]
|
|
self.call_memory('update_priorities', (batch.info('idx'), errors))
|
|
|
|
return total_loss, losses, unclipped_grads
|
|
|