mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
Cleanup imports.
Till now, most of the modules were importing all of the module objects (variables, classes, functions, other imports) into module namespace, which potentially could (and was) cause of unintentional use of class or methods, which was indirect imported. With this patch, all the star imports were substituted with top-level module, which provides desired class or function. Besides, all imports where sorted (where possible) in a way pep8[1] suggests - first are imports from standard library, than goes third party imports (like numpy, tensorflow etc) and finally coach modules. All of those sections are separated by one empty line. [1] https://www.python.org/dev/peps/pep-0008/#imports
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,26 +13,48 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from agents.actor_critic_agent import ActorCriticAgent
|
||||
from agents.agent import Agent
|
||||
from agents.bc_agent import BCAgent
|
||||
from agents.bootstrapped_dqn_agent import BootstrappedDQNAgent
|
||||
from agents.categorical_dqn_agent import CategoricalDQNAgent
|
||||
from agents.clipped_ppo_agent import ClippedPPOAgent
|
||||
from agents.ddpg_agent import DDPGAgent
|
||||
from agents.ddqn_agent import DDQNAgent
|
||||
from agents.dfp_agent import DFPAgent
|
||||
from agents.dqn_agent import DQNAgent
|
||||
from agents.human_agent import HumanAgent
|
||||
from agents.imitation_agent import ImitationAgent
|
||||
from agents.mmc_agent import MixedMonteCarloAgent
|
||||
from agents.n_step_q_agent import NStepQAgent
|
||||
from agents.naf_agent import NAFAgent
|
||||
from agents.nec_agent import NECAgent
|
||||
from agents.pal_agent import PALAgent
|
||||
from agents.policy_gradients_agent import PolicyGradientsAgent
|
||||
from agents.policy_optimization_agent import PolicyOptimizationAgent
|
||||
from agents.ppo_agent import PPOAgent
|
||||
from agents.qr_dqn_agent import QuantileRegressionDQNAgent
|
||||
from agents.value_optimization_agent import ValueOptimizationAgent
|
||||
|
||||
from agents.actor_critic_agent import *
|
||||
from agents.agent import *
|
||||
from agents.bc_agent import *
|
||||
from agents.bootstrapped_dqn_agent import *
|
||||
from agents.clipped_ppo_agent import *
|
||||
from agents.ddpg_agent import *
|
||||
from agents.ddqn_agent import *
|
||||
from agents.dfp_agent import *
|
||||
from agents.dqn_agent import *
|
||||
from agents.categorical_dqn_agent import *
|
||||
from agents.human_agent import *
|
||||
from agents.imitation_agent import *
|
||||
from agents.mmc_agent import *
|
||||
from agents.n_step_q_agent import *
|
||||
from agents.naf_agent import *
|
||||
from agents.nec_agent import *
|
||||
from agents.pal_agent import *
|
||||
from agents.policy_gradients_agent import *
|
||||
from agents.policy_optimization_agent import *
|
||||
from agents.ppo_agent import *
|
||||
from agents.value_optimization_agent import *
|
||||
from agents.qr_dqn_agent import *
|
||||
__all__ = [ActorCriticAgent,
|
||||
Agent,
|
||||
BCAgent,
|
||||
BootstrappedDQNAgent,
|
||||
CategoricalDQNAgent,
|
||||
ClippedPPOAgent,
|
||||
DDPGAgent,
|
||||
DDQNAgent,
|
||||
DFPAgent,
|
||||
DQNAgent,
|
||||
HumanAgent,
|
||||
ImitationAgent,
|
||||
MixedMonteCarloAgent,
|
||||
NAFAgent,
|
||||
NECAgent,
|
||||
NStepQAgent,
|
||||
PALAgent,
|
||||
PPOAgent,
|
||||
PolicyGradientsAgent,
|
||||
PolicyOptimizationAgent,
|
||||
QuantileRegressionDQNAgent,
|
||||
ValueOptimizationAgent]
|
||||
|
||||
@@ -13,23 +13,24 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
from scipy import signal
|
||||
|
||||
from agents.policy_optimization_agent import *
|
||||
from logger import *
|
||||
from utils import *
|
||||
import scipy.signal
|
||||
from agents import policy_optimization_agent as poa
|
||||
import utils
|
||||
import logger
|
||||
|
||||
|
||||
# Actor Critic - https://arxiv.org/abs/1602.01783
|
||||
class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
class ActorCriticAgent(poa.PolicyOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0, create_target_network = False):
|
||||
PolicyOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id, create_target_network)
|
||||
poa.PolicyOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id, create_target_network)
|
||||
self.last_gradient_update_step_idx = 0
|
||||
self.action_advantages = Signal('Advantages')
|
||||
self.state_values = Signal('Values')
|
||||
self.unclipped_grads = Signal('Grads (unclipped)')
|
||||
self.value_loss = Signal('Value Loss')
|
||||
self.policy_loss = Signal('Policy Loss')
|
||||
self.action_advantages = utils.Signal('Advantages')
|
||||
self.state_values = utils.Signal('Values')
|
||||
self.unclipped_grads = utils.Signal('Grads (unclipped)')
|
||||
self.value_loss = utils.Signal('Value Loss')
|
||||
self.policy_loss = utils.Signal('Policy Loss')
|
||||
self.signals.append(self.action_advantages)
|
||||
self.signals.append(self.state_values)
|
||||
self.signals.append(self.unclipped_grads)
|
||||
@@ -38,7 +39,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
|
||||
# Discounting function used to calculate discounted returns.
|
||||
def discount(self, x, gamma):
|
||||
return scipy.signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1]
|
||||
return signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1]
|
||||
|
||||
def get_general_advantage_estimation_values(self, rewards, values):
|
||||
# values contain n+1 elements (t ... t+n+1), rewards contain n elements (t ... t + n)
|
||||
@@ -72,20 +73,20 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
# estimate the advantage function
|
||||
action_advantages = np.zeros((num_transitions, 1))
|
||||
|
||||
if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE:
|
||||
if self.policy_gradient_rescaler == poa.PolicyGradientRescaler.A_VALUE:
|
||||
if game_overs[-1]:
|
||||
R = 0
|
||||
else:
|
||||
R = self.main_network.online_network.predict(last_sample(next_states))[0]
|
||||
R = self.main_network.online_network.predict(utils.last_sample(next_states))[0]
|
||||
|
||||
for i in reversed(range(num_transitions)):
|
||||
R = rewards[i] + self.tp.agent.discount * R
|
||||
state_value_head_targets[i] = R
|
||||
action_advantages[i] = R - current_state_values[i]
|
||||
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE:
|
||||
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.GAE:
|
||||
# get bootstraps
|
||||
bootstrapped_value = self.main_network.online_network.predict(last_sample(next_states))[0]
|
||||
bootstrapped_value = self.main_network.online_network.predict(utils.last_sample(next_states))[0]
|
||||
values = np.append(current_state_values, bootstrapped_value)
|
||||
if game_overs[-1]:
|
||||
values[-1] = 0
|
||||
@@ -94,7 +95,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
gae_values, state_value_head_targets = self.get_general_advantage_estimation_values(rewards, values)
|
||||
action_advantages = np.vstack(gae_values)
|
||||
else:
|
||||
screen.warning("WARNING: The requested policy gradient rescaler is not available")
|
||||
logger.screen.warning("WARNING: The requested policy gradient rescaler is not available")
|
||||
|
||||
action_advantages = action_advantages.squeeze(axis=-1)
|
||||
if not self.env.discrete_controls and len(actions.shape) < 2:
|
||||
@@ -113,7 +114,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
|
||||
return total_loss
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
# TODO: rename curr_state -> state
|
||||
|
||||
# convert to batch so we can run it through the network
|
||||
@@ -126,7 +127,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
# DISCRETE
|
||||
state_value, action_probabilities = self.main_network.online_network.predict(curr_state)
|
||||
action_probabilities = action_probabilities.squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_probabilities)
|
||||
else:
|
||||
action = np.argmax(action_probabilities)
|
||||
@@ -137,7 +138,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
state_value, action_values_mean, action_values_std = self.main_network.online_network.predict(curr_state)
|
||||
action_values_mean = action_values_mean.squeeze()
|
||||
action_values_std = action_values_std.squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = np.squeeze(np.random.randn(1, self.action_space_size) * action_values_std + action_values_mean)
|
||||
else:
|
||||
action = action_values_mean
|
||||
|
||||
181
agents/agent.py
181
agents/agent.py
@@ -13,32 +13,28 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import scipy.ndimage
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
except:
|
||||
from logger import failed_imports
|
||||
failed_imports.append("matplotlib")
|
||||
|
||||
import copy
|
||||
from renderer import Renderer
|
||||
from configurations import Preset
|
||||
from collections import deque
|
||||
from utils import LazyStack
|
||||
from collections import OrderedDict
|
||||
from utils import RunPhase, Signal, is_empty, RunningStat
|
||||
from architectures import *
|
||||
from exploration_policies import *
|
||||
from memories import *
|
||||
from memories.memory import *
|
||||
from logger import logger, screen
|
||||
import collections
|
||||
import random
|
||||
import time
|
||||
import os
|
||||
import itertools
|
||||
from architectures.tensorflow_components.shared_variables import SharedRunningStats
|
||||
|
||||
import logger
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
except ImportError:
|
||||
logger.failed_imports.append("matplotlib")
|
||||
|
||||
import numpy as np
|
||||
from pandas.io import pickle
|
||||
from six.moves import range
|
||||
import scipy
|
||||
|
||||
from architectures.tensorflow_components import shared_variables as sv
|
||||
import configurations
|
||||
import exploration_policies as ep
|
||||
import memories
|
||||
from memories import memory
|
||||
import renderer
|
||||
import utils
|
||||
|
||||
|
||||
class Agent(object):
|
||||
@@ -54,7 +50,7 @@ class Agent(object):
|
||||
:param thread_id: int
|
||||
"""
|
||||
|
||||
screen.log_title("Creating agent {}".format(task_id))
|
||||
logger.screen.log_title("Creating agent {}".format(task_id))
|
||||
self.task_id = task_id
|
||||
self.sess = tuning_parameters.sess
|
||||
self.env = tuning_parameters.env_instance = env
|
||||
@@ -71,21 +67,20 @@ class Agent(object):
|
||||
|
||||
# modules
|
||||
if tuning_parameters.agent.load_memory_from_file_path:
|
||||
screen.log_title("Loading replay buffer from pickle. Pickle path: {}"
|
||||
logger.screen.log_title("Loading replay buffer from pickle. Pickle path: {}"
|
||||
.format(tuning_parameters.agent.load_memory_from_file_path))
|
||||
self.memory = read_pickle(tuning_parameters.agent.load_memory_from_file_path)
|
||||
self.memory = pickle.read_pickle(tuning_parameters.agent.load_memory_from_file_path)
|
||||
else:
|
||||
self.memory = eval(tuning_parameters.memory + '(tuning_parameters)')
|
||||
# self.architecture = eval(tuning_parameters.architecture)
|
||||
self.memory = eval('memories.' + tuning_parameters.memory + '(tuning_parameters)')
|
||||
|
||||
self.has_global = replicated_device is not None
|
||||
self.replicated_device = replicated_device
|
||||
self.worker_device = "/job:worker/task:{}/cpu:0".format(task_id) if replicated_device is not None else "/gpu:0"
|
||||
|
||||
self.exploration_policy = eval(tuning_parameters.exploration.policy + '(tuning_parameters)')
|
||||
self.evaluation_exploration_policy = eval(tuning_parameters.exploration.evaluation_policy
|
||||
self.exploration_policy = eval('ep.' + tuning_parameters.exploration.policy + '(tuning_parameters)')
|
||||
self.evaluation_exploration_policy = eval('ep.' + tuning_parameters.exploration.evaluation_policy
|
||||
+ '(tuning_parameters)')
|
||||
self.evaluation_exploration_policy.change_phase(RunPhase.TEST)
|
||||
self.evaluation_exploration_policy.change_phase(utils.RunPhase.TEST)
|
||||
|
||||
# initialize all internal variables
|
||||
self.tp = tuning_parameters
|
||||
@@ -100,30 +95,30 @@ class Agent(object):
|
||||
self.episode_running_info = {}
|
||||
self.last_episode_evaluation_ran = 0
|
||||
self.running_observations = []
|
||||
logger.set_current_time(self.current_episode)
|
||||
logger.logger.set_current_time(self.current_episode)
|
||||
self.main_network = None
|
||||
self.networks = []
|
||||
self.last_episode_images = []
|
||||
self.renderer = Renderer()
|
||||
self.renderer = renderer.Renderer()
|
||||
|
||||
# signals
|
||||
self.signals = []
|
||||
self.loss = Signal('Loss')
|
||||
self.loss = utils.Signal('Loss')
|
||||
self.signals.append(self.loss)
|
||||
self.curr_learning_rate = Signal('Learning Rate')
|
||||
self.curr_learning_rate = utils.Signal('Learning Rate')
|
||||
self.signals.append(self.curr_learning_rate)
|
||||
|
||||
if self.tp.env.normalize_observation and not self.env.is_state_type_image:
|
||||
if not self.tp.distributed or not self.tp.agent.share_statistics_between_workers:
|
||||
self.running_observation_stats = RunningStat((self.tp.env.desired_observation_width,))
|
||||
self.running_reward_stats = RunningStat(())
|
||||
self.running_observation_stats = utils.RunningStat((self.tp.env.desired_observation_width,))
|
||||
self.running_reward_stats = utils.RunningStat(())
|
||||
else:
|
||||
self.running_observation_stats = SharedRunningStats(self.tp, replicated_device,
|
||||
shape=(self.tp.env.desired_observation_width,),
|
||||
name='observation_stats')
|
||||
self.running_reward_stats = SharedRunningStats(self.tp, replicated_device,
|
||||
shape=(),
|
||||
name='reward_stats')
|
||||
self.running_observation_stats = sv.SharedRunningStats(self.tp, replicated_device,
|
||||
shape=(self.tp.env.desired_observation_width,),
|
||||
name='observation_stats')
|
||||
self.running_reward_stats = sv.SharedRunningStats(self.tp, replicated_device,
|
||||
shape=(),
|
||||
name='reward_stats')
|
||||
|
||||
# env is already reset at this point. Otherwise we're getting an error where you cannot
|
||||
# reset an env which is not done
|
||||
@@ -137,13 +132,13 @@ class Agent(object):
|
||||
def log_to_screen(self, phase):
|
||||
# log to screen
|
||||
if self.current_episode >= 0:
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
exploration = self.exploration_policy.get_control_param()
|
||||
else:
|
||||
exploration = self.evaluation_exploration_policy.get_control_param()
|
||||
|
||||
screen.log_dict(
|
||||
OrderedDict([
|
||||
logger.screen.log_dict(
|
||||
collections.OrderedDict([
|
||||
("Worker", self.task_id),
|
||||
("Episode", self.current_episode),
|
||||
("total reward", self.total_reward_in_current_episode),
|
||||
@@ -154,37 +149,37 @@ class Agent(object):
|
||||
prefix=phase
|
||||
)
|
||||
|
||||
def update_log(self, phase=RunPhase.TRAIN):
|
||||
def update_log(self, phase=utils.RunPhase.TRAIN):
|
||||
"""
|
||||
Writes logging messages to screen and updates the log file with all the signal values.
|
||||
:return: None
|
||||
"""
|
||||
# log all the signals to file
|
||||
logger.set_current_time(self.current_episode)
|
||||
logger.create_signal_value('Training Iter', self.training_iteration)
|
||||
logger.create_signal_value('In Heatup', int(phase == RunPhase.HEATUP))
|
||||
logger.create_signal_value('ER #Transitions', self.memory.num_transitions())
|
||||
logger.create_signal_value('ER #Episodes', self.memory.length())
|
||||
logger.create_signal_value('Episode Length', self.current_episode_steps_counter)
|
||||
logger.create_signal_value('Total steps', self.total_steps_counter)
|
||||
logger.create_signal_value("Epsilon", self.exploration_policy.get_control_param())
|
||||
logger.create_signal_value("Training Reward", self.total_reward_in_current_episode
|
||||
if phase == RunPhase.TRAIN else np.nan)
|
||||
logger.create_signal_value('Evaluation Reward', self.total_reward_in_current_episode
|
||||
if phase == RunPhase.TEST else np.nan)
|
||||
logger.create_signal_value('Update Target Network', 0, overwrite=False)
|
||||
logger.update_wall_clock_time(self.current_episode)
|
||||
logger.logger.set_current_time(self.current_episode)
|
||||
logger.logger.create_signal_value('Training Iter', self.training_iteration)
|
||||
logger.logger.create_signal_value('In Heatup', int(phase == utils.RunPhase.HEATUP))
|
||||
logger.logger.create_signal_value('ER #Transitions', self.memory.num_transitions())
|
||||
logger.logger.create_signal_value('ER #Episodes', self.memory.length())
|
||||
logger.logger.create_signal_value('Episode Length', self.current_episode_steps_counter)
|
||||
logger.logger.create_signal_value('Total steps', self.total_steps_counter)
|
||||
logger.logger.create_signal_value("Epsilon", self.exploration_policy.get_control_param())
|
||||
logger.logger.create_signal_value("Training Reward", self.total_reward_in_current_episode
|
||||
if phase == utils.RunPhase.TRAIN else np.nan)
|
||||
logger.logger.create_signal_value('Evaluation Reward', self.total_reward_in_current_episode
|
||||
if phase == utils.RunPhase.TEST else np.nan)
|
||||
logger.logger.create_signal_value('Update Target Network', 0, overwrite=False)
|
||||
logger.logger.update_wall_clock_time(self.current_episode)
|
||||
|
||||
for signal in self.signals:
|
||||
logger.create_signal_value("{}/Mean".format(signal.name), signal.get_mean())
|
||||
logger.create_signal_value("{}/Stdev".format(signal.name), signal.get_stdev())
|
||||
logger.create_signal_value("{}/Max".format(signal.name), signal.get_max())
|
||||
logger.create_signal_value("{}/Min".format(signal.name), signal.get_min())
|
||||
logger.logger.create_signal_value("{}/Mean".format(signal.name), signal.get_mean())
|
||||
logger.logger.create_signal_value("{}/Stdev".format(signal.name), signal.get_stdev())
|
||||
logger.logger.create_signal_value("{}/Max".format(signal.name), signal.get_max())
|
||||
logger.logger.create_signal_value("{}/Min".format(signal.name), signal.get_min())
|
||||
|
||||
# dump
|
||||
if self.current_episode % self.tp.visualization.dump_signals_to_csv_every_x_episodes == 0 \
|
||||
and self.current_episode > 0:
|
||||
logger.dump_output_csv()
|
||||
logger.logger.dump_output_csv()
|
||||
|
||||
def reset_game(self, do_not_reset_env=False):
|
||||
"""
|
||||
@@ -211,7 +206,7 @@ class Agent(object):
|
||||
self.episode_running_info[action] = []
|
||||
plt.clf()
|
||||
|
||||
if self.tp.agent.middleware_type == MiddlewareTypes.LSTM:
|
||||
if self.tp.agent.middleware_type == configurations.MiddlewareTypes.LSTM:
|
||||
for network in self.networks:
|
||||
network.online_network.curr_rnn_c_in = network.online_network.middleware_embedder.c_init
|
||||
network.online_network.curr_rnn_h_in = network.online_network.middleware_embedder.h_init
|
||||
@@ -281,9 +276,9 @@ class Agent(object):
|
||||
if self.total_steps_counter % self.tp.agent.num_steps_between_copying_online_weights_to_target == 0:
|
||||
for network in self.networks:
|
||||
network.update_target_network(self.tp.agent.rate_for_copying_weights_to_target)
|
||||
logger.create_signal_value('Update Target Network', 1)
|
||||
logger.logger.create_signal_value('Update Target Network', 1)
|
||||
else:
|
||||
logger.create_signal_value('Update Target Network', 0, overwrite=False)
|
||||
logger.logger.create_signal_value('Update Target Network', 0, overwrite=False)
|
||||
|
||||
return loss
|
||||
|
||||
@@ -321,7 +316,7 @@ class Agent(object):
|
||||
plt.legend()
|
||||
plt.pause(0.00000001)
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
"""
|
||||
choose an action to act with in the current episode being played. Different behavior might be exhibited when training
|
||||
or testing.
|
||||
@@ -351,15 +346,15 @@ class Agent(object):
|
||||
for input_name in self.tp.agent.input_types.keys():
|
||||
input_state[input_name] = np.expand_dims(np.array(curr_state[input_name]), 0)
|
||||
return input_state
|
||||
|
||||
|
||||
def prepare_initial_state(self):
|
||||
"""
|
||||
Create an initial state when starting a new episode
|
||||
:return: None
|
||||
"""
|
||||
observation = self.preprocess_observation(self.env.state['observation'])
|
||||
self.curr_stack = deque([observation]*self.tp.env.observation_stack_size, maxlen=self.tp.env.observation_stack_size)
|
||||
observation = LazyStack(self.curr_stack, -1)
|
||||
self.curr_stack = collections.deque([observation]*self.tp.env.observation_stack_size, maxlen=self.tp.env.observation_stack_size)
|
||||
observation = utils.LazyStack(self.curr_stack, -1)
|
||||
|
||||
self.curr_state = {
|
||||
'observation': observation
|
||||
@@ -369,21 +364,21 @@ class Agent(object):
|
||||
if self.tp.agent.use_accumulated_reward_as_measurement:
|
||||
self.curr_state['measurements'] = np.append(self.curr_state['measurements'], 0)
|
||||
|
||||
def act(self, phase=RunPhase.TRAIN):
|
||||
def act(self, phase=utils.RunPhase.TRAIN):
|
||||
"""
|
||||
Take one step in the environment according to the network prediction and store the transition in memory
|
||||
:param phase: Either Train or Test to specify if greedy actions should be used and if transitions should be stored
|
||||
:return: A boolean value that signals an episode termination
|
||||
"""
|
||||
|
||||
if phase != RunPhase.TEST:
|
||||
if phase != utils.RunPhase.TEST:
|
||||
self.total_steps_counter += 1
|
||||
self.current_episode_steps_counter += 1
|
||||
|
||||
# get new action
|
||||
action_info = {"action_probability": 1.0 / self.env.action_space_size, "action_value": 0, "max_action_value": 0}
|
||||
|
||||
if phase == RunPhase.HEATUP and not self.tp.heatup_using_network_decisions:
|
||||
if phase == utils.RunPhase.HEATUP and not self.tp.heatup_using_network_decisions:
|
||||
action = self.env.get_random_action()
|
||||
else:
|
||||
action, action_info = self.choose_action(self.curr_state, phase=phase)
|
||||
@@ -402,13 +397,13 @@ class Agent(object):
|
||||
next_state['observation'] = self.preprocess_observation(next_state['observation'])
|
||||
|
||||
# plot action values online
|
||||
if self.tp.visualization.plot_action_values_online and phase != RunPhase.HEATUP:
|
||||
if self.tp.visualization.plot_action_values_online and phase != utils.RunPhase.HEATUP:
|
||||
self.plot_action_values_online()
|
||||
|
||||
# initialize the next state
|
||||
# TODO: provide option to stack more than just the observation
|
||||
self.curr_stack.append(next_state['observation'])
|
||||
observation = LazyStack(self.curr_stack, -1)
|
||||
observation = utils.LazyStack(self.curr_stack, -1)
|
||||
|
||||
next_state['observation'] = observation
|
||||
if self.tp.agent.use_measurements and 'measurements' in result.keys():
|
||||
@@ -417,14 +412,14 @@ class Agent(object):
|
||||
next_state['measurements'] = np.append(next_state['measurements'], self.total_reward_in_current_episode)
|
||||
|
||||
# store the transition only if we are training
|
||||
if phase == RunPhase.TRAIN or phase == RunPhase.HEATUP:
|
||||
transition = Transition(self.curr_state, result['action'], shaped_reward, next_state, result['done'])
|
||||
if phase == utils.RunPhase.TRAIN or phase == utils.RunPhase.HEATUP:
|
||||
transition = memory.Transition(self.curr_state, result['action'], shaped_reward, next_state, result['done'])
|
||||
for key in action_info.keys():
|
||||
transition.info[key] = action_info[key]
|
||||
if self.tp.agent.add_a_normalized_timestep_to_the_observation:
|
||||
transition.info['timestep'] = float(self.current_episode_steps_counter) / self.env.timestep_limit
|
||||
self.memory.store(transition)
|
||||
elif phase == RunPhase.TEST and self.tp.visualization.dump_gifs:
|
||||
elif phase == utils.RunPhase.TEST and self.tp.visualization.dump_gifs:
|
||||
# we store the transitions only for saving gifs
|
||||
self.last_episode_images.append(self.env.get_rendered_image())
|
||||
|
||||
@@ -437,7 +432,7 @@ class Agent(object):
|
||||
self.update_log(phase=phase)
|
||||
self.log_to_screen(phase=phase)
|
||||
|
||||
if phase == RunPhase.TRAIN or phase == RunPhase.HEATUP:
|
||||
if phase == utils.RunPhase.TRAIN or phase == utils.RunPhase.HEATUP:
|
||||
self.reset_game()
|
||||
|
||||
self.current_episode += 1
|
||||
@@ -456,8 +451,8 @@ class Agent(object):
|
||||
|
||||
max_reward_achieved = -float('inf')
|
||||
average_evaluation_reward = 0
|
||||
screen.log_title("Running evaluation")
|
||||
self.env.change_phase(RunPhase.TEST)
|
||||
logger.screen.log_title("Running evaluation")
|
||||
self.env.change_phase(utils.RunPhase.TEST)
|
||||
for i in range(num_episodes):
|
||||
# keep the online network in sync with the global network
|
||||
if keep_networks_synced:
|
||||
@@ -466,7 +461,7 @@ class Agent(object):
|
||||
|
||||
episode_ended = False
|
||||
while not episode_ended:
|
||||
episode_ended = self.act(phase=RunPhase.TEST)
|
||||
episode_ended = self.act(phase=utils.RunPhase.TEST)
|
||||
|
||||
if keep_networks_synced \
|
||||
and self.total_steps_counter % self.tp.agent.update_evaluation_agent_network_after_every_num_steps:
|
||||
@@ -477,7 +472,7 @@ class Agent(object):
|
||||
max_reward_achieved = self.total_reward_in_current_episode
|
||||
frame_skipping = int(5/self.tp.env.frame_skip)
|
||||
if self.tp.visualization.dump_gifs:
|
||||
logger.create_gif(self.last_episode_images[::frame_skipping],
|
||||
logger.logger.create_gif(self.last_episode_images[::frame_skipping],
|
||||
name='score-{}'.format(max_reward_achieved), fps=10)
|
||||
|
||||
average_evaluation_reward += self.total_reward_in_current_episode
|
||||
@@ -485,8 +480,8 @@ class Agent(object):
|
||||
|
||||
average_evaluation_reward /= float(num_episodes)
|
||||
|
||||
self.env.change_phase(RunPhase.TRAIN)
|
||||
screen.log_title("Evaluation done. Average reward = {}.".format(average_evaluation_reward))
|
||||
self.env.change_phase(utils.RunPhase.TRAIN)
|
||||
logger.screen.log_title("Evaluation done. Average reward = {}.".format(average_evaluation_reward))
|
||||
|
||||
def post_training_commands(self):
|
||||
pass
|
||||
@@ -505,15 +500,15 @@ class Agent(object):
|
||||
# heatup phase
|
||||
if self.tp.num_heatup_steps != 0:
|
||||
self.in_heatup = True
|
||||
screen.log_title("Starting heatup {}".format(self.task_id))
|
||||
logger.screen.log_title("Starting heatup {}".format(self.task_id))
|
||||
num_steps_required_for_one_training_batch = self.tp.batch_size * self.tp.env.observation_stack_size
|
||||
for step in range(max(self.tp.num_heatup_steps, num_steps_required_for_one_training_batch)):
|
||||
self.act(phase=RunPhase.HEATUP)
|
||||
self.act(phase=utils.RunPhase.HEATUP)
|
||||
|
||||
# training phase
|
||||
self.in_heatup = False
|
||||
screen.log_title("Starting training {}".format(self.task_id))
|
||||
self.exploration_policy.change_phase(RunPhase.TRAIN)
|
||||
logger.screen.log_title("Starting training {}".format(self.task_id))
|
||||
self.exploration_policy.change_phase(utils.RunPhase.TRAIN)
|
||||
training_start_time = time.time()
|
||||
model_snapshots_periods_passed = -1
|
||||
self.reset_game()
|
||||
@@ -557,7 +552,7 @@ class Agent(object):
|
||||
self.loss.add_sample(loss)
|
||||
self.training_iteration += 1
|
||||
if self.imitation:
|
||||
self.log_to_screen(RunPhase.TRAIN)
|
||||
self.log_to_screen(utils.RunPhase.TRAIN)
|
||||
self.post_training_commands()
|
||||
|
||||
def save_model(self, model_id):
|
||||
|
||||
@@ -13,16 +13,15 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
|
||||
from agents.imitation_agent import ImitationAgent
|
||||
from agents import imitation_agent
|
||||
|
||||
|
||||
# Behavioral Cloning Agent
|
||||
class BCAgent(ImitationAgent):
|
||||
class BCAgent(imitation_agent.ImitationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ImitationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
imitation_agent.ImitationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
current_states, _, actions, _, _, _ = self.extract_batch(batch)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,17 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from agents.value_optimization_agent import *
|
||||
|
||||
from agents import value_optimization_agent as voa
|
||||
import utils
|
||||
|
||||
# Bootstrapped DQN - https://arxiv.org/pdf/1602.04621.pdf
|
||||
class BootstrappedDQNAgent(ValueOptimizationAgent):
|
||||
class BootstrappedDQNAgent(voa.ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
|
||||
def reset_game(self, do_not_reset_env=False):
|
||||
ValueOptimizationAgent.reset_game(self, do_not_reset_env)
|
||||
voa.ValueOptimizationAgent.reset_game(self, do_not_reset_env)
|
||||
self.exploration_policy.select_head()
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
@@ -51,8 +52,8 @@ class BootstrappedDQNAgent(ValueOptimizationAgent):
|
||||
|
||||
return total_loss
|
||||
|
||||
def act(self, phase=RunPhase.TRAIN):
|
||||
ValueOptimizationAgent.act(self, phase)
|
||||
def act(self, phase=utils.RunPhase.TRAIN):
|
||||
voa.ValueOptimizationAgent.act(self, phase)
|
||||
mask = np.random.binomial(1, self.tp.exploration.bootstrapped_data_sharing_probability,
|
||||
self.tp.exploration.architecture_num_q_heads)
|
||||
self.memory.update_last_transition_info({'mask': mask})
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,14 +13,15 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from agents.value_optimization_agent import *
|
||||
from agents import value_optimization_agent as voa
|
||||
|
||||
|
||||
# Categorical Deep Q Network - https://arxiv.org/pdf/1707.06887.pdf
|
||||
class CategoricalDQNAgent(ValueOptimizationAgent):
|
||||
class CategoricalDQNAgent(voa.ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.z_values = np.linspace(self.tp.agent.v_min, self.tp.agent.v_max, self.tp.agent.atoms)
|
||||
|
||||
# prediction's format is (batch,actions,atoms)
|
||||
@@ -57,4 +58,3 @@ class CategoricalDQNAgent(ValueOptimizationAgent):
|
||||
total_loss = result[0]
|
||||
|
||||
return total_loss
|
||||
|
||||
|
||||
@@ -13,27 +13,34 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from agents.actor_critic_agent import *
|
||||
import collections
|
||||
import copy
|
||||
from random import shuffle
|
||||
|
||||
import numpy as np
|
||||
|
||||
from agents import actor_critic_agent as aca
|
||||
from agents import policy_optimization_agent as poa
|
||||
import logger
|
||||
import utils
|
||||
|
||||
|
||||
# Clipped Proximal Policy Optimization - https://arxiv.org/abs/1707.06347
|
||||
class ClippedPPOAgent(ActorCriticAgent):
|
||||
class ClippedPPOAgent(aca.ActorCriticAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
||||
create_target_network=True)
|
||||
aca.ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
||||
create_target_network=True)
|
||||
# signals definition
|
||||
self.value_loss = Signal('Value Loss')
|
||||
self.value_loss = utils.Signal('Value Loss')
|
||||
self.signals.append(self.value_loss)
|
||||
self.policy_loss = Signal('Policy Loss')
|
||||
self.policy_loss = utils.Signal('Policy Loss')
|
||||
self.signals.append(self.policy_loss)
|
||||
self.total_kl_divergence_during_training_process = 0.0
|
||||
self.unclipped_grads = Signal('Grads (unclipped)')
|
||||
self.unclipped_grads = utils.Signal('Grads (unclipped)')
|
||||
self.signals.append(self.unclipped_grads)
|
||||
self.value_targets = Signal('Value Targets')
|
||||
self.value_targets = utils.Signal('Value Targets')
|
||||
self.signals.append(self.value_targets)
|
||||
self.kl_divergence = Signal('KL Divergence')
|
||||
self.kl_divergence = utils.Signal('KL Divergence')
|
||||
self.signals.append(self.kl_divergence)
|
||||
|
||||
def fill_advantages(self, batch):
|
||||
@@ -46,9 +53,9 @@ class ClippedPPOAgent(ActorCriticAgent):
|
||||
# calculate advantages
|
||||
advantages = []
|
||||
value_targets = []
|
||||
if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE:
|
||||
if self.policy_gradient_rescaler == poa.PolicyGradientRescaler.A_VALUE:
|
||||
advantages = total_return - current_state_values
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE:
|
||||
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.GAE:
|
||||
# get bootstraps
|
||||
episode_start_idx = 0
|
||||
advantages = np.array([])
|
||||
@@ -66,7 +73,7 @@ class ClippedPPOAgent(ActorCriticAgent):
|
||||
advantages = np.append(advantages, rollout_advantages)
|
||||
value_targets = np.append(value_targets, gae_based_value_targets)
|
||||
else:
|
||||
screen.warning("WARNING: The requested policy gradient rescaler is not available")
|
||||
logger.screen.warning("WARNING: The requested policy gradient rescaler is not available")
|
||||
|
||||
# standardize
|
||||
advantages = (advantages - np.mean(advantages)) / np.std(advantages)
|
||||
@@ -144,8 +151,8 @@ class ClippedPPOAgent(ActorCriticAgent):
|
||||
curr_learning_rate = self.tp.learning_rate
|
||||
|
||||
# log training parameters
|
||||
screen.log_dict(
|
||||
OrderedDict([
|
||||
logger.screen.log_dict(
|
||||
collections.OrderedDict([
|
||||
("Surrogate loss", loss['policy_losses'][0]),
|
||||
("KL divergence", loss['fetch_result'][0]),
|
||||
("Entropy", loss['fetch_result'][1]),
|
||||
@@ -184,13 +191,13 @@ class ClippedPPOAgent(ActorCriticAgent):
|
||||
self.update_log() # should be done in order to update the data that has been accumulated * while not playing *
|
||||
return np.append(losses[0], losses[1])
|
||||
|
||||
def choose_action(self, current_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, current_state, phase=utils.RunPhase.TRAIN):
|
||||
if self.env.discrete_controls:
|
||||
# DISCRETE
|
||||
_, action_values = self.main_network.online_network.predict(self.tf_input_state(current_state))
|
||||
action_values = action_values.squeeze()
|
||||
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = np.argmax(action_values)
|
||||
@@ -201,7 +208,7 @@ class ClippedPPOAgent(ActorCriticAgent):
|
||||
_, action_values_mean, action_values_std = self.main_network.online_network.predict(self.tf_input_state(current_state))
|
||||
action_values_mean = action_values_mean.squeeze()
|
||||
action_values_std = action_values_std.squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = np.squeeze(np.random.randn(1, self.action_space_size) * action_values_std + action_values_mean)
|
||||
# if self.current_episode % 5 == 0 and self.current_episode_steps_counter < 5:
|
||||
# print action
|
||||
|
||||
@@ -13,28 +13,34 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import copy
|
||||
|
||||
from agents.actor_critic_agent import *
|
||||
from configurations import *
|
||||
import numpy as np
|
||||
|
||||
from agents import actor_critic_agent as aca
|
||||
from agents import agent
|
||||
from architectures import network_wrapper as nw
|
||||
import configurations as conf
|
||||
import utils
|
||||
|
||||
|
||||
# Deep Deterministic Policy Gradients Network - https://arxiv.org/pdf/1509.02971.pdf
|
||||
class DDPGAgent(ActorCriticAgent):
|
||||
class DDPGAgent(aca.ActorCriticAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
||||
create_target_network=True)
|
||||
aca.ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
||||
create_target_network=True)
|
||||
# define critic network
|
||||
self.critic_network = self.main_network
|
||||
# self.networks.append(self.critic_network)
|
||||
|
||||
# define actor network
|
||||
tuning_parameters.agent.input_types = {'observation': InputTypes.Observation}
|
||||
tuning_parameters.agent.output_types = [OutputTypes.Pi]
|
||||
self.actor_network = NetworkWrapper(tuning_parameters, True, self.has_global, 'actor',
|
||||
self.replicated_device, self.worker_device)
|
||||
tuning_parameters.agent.input_types = {'observation': conf.InputTypes.Observation}
|
||||
tuning_parameters.agent.output_types = [conf.OutputTypes.Pi]
|
||||
self.actor_network = nw.NetworkWrapper(tuning_parameters, True, self.has_global, 'actor',
|
||||
self.replicated_device, self.worker_device)
|
||||
self.networks.append(self.actor_network)
|
||||
|
||||
self.q_values = Signal("Q")
|
||||
self.q_values = utils.Signal("Q")
|
||||
self.signals.append(self.q_values)
|
||||
|
||||
self.reset_game(do_not_reset_env=True)
|
||||
@@ -82,14 +88,14 @@ class DDPGAgent(ActorCriticAgent):
|
||||
return total_loss
|
||||
|
||||
def train(self):
|
||||
return Agent.train(self)
|
||||
return agent.Agent.train(self)
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
assert not self.env.discrete_controls, 'DDPG works only for continuous control problems'
|
||||
result = self.actor_network.online_network.predict(self.tf_input_state(curr_state))
|
||||
action_values = result[0].squeeze()
|
||||
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = action_values
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,14 +13,15 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from agents.value_optimization_agent import *
|
||||
from agents import value_optimization_agent as voa
|
||||
|
||||
|
||||
# Double DQN - https://arxiv.org/abs/1509.06461
|
||||
class DDQNAgent(ValueOptimizationAgent):
|
||||
class DDQNAgent(voa.ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch)
|
||||
|
||||
@@ -13,17 +13,20 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from agents.agent import *
|
||||
from agents import agent
|
||||
from architectures import network_wrapper as nw
|
||||
import utils
|
||||
|
||||
|
||||
# Direct Future Prediction Agent - http://vladlen.info/papers/learning-to-act.pdf
|
||||
class DFPAgent(Agent):
|
||||
class DFPAgent(agent.Agent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
agent.Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.current_goal = self.tp.agent.goal_vector
|
||||
self.main_network = NetworkWrapper(tuning_parameters, False, self.has_global, 'main',
|
||||
self.replicated_device, self.worker_device)
|
||||
self.main_network = nw.NetworkWrapper(tuning_parameters, False, self.has_global, 'main',
|
||||
self.replicated_device, self.worker_device)
|
||||
self.networks.append(self.main_network)
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
@@ -45,7 +48,7 @@ class DFPAgent(Agent):
|
||||
|
||||
return total_loss
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
# convert to batch so we can run it through the network
|
||||
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
||||
measurements = np.expand_dims(np.array(curr_state['measurements']), 0)
|
||||
@@ -66,7 +69,7 @@ class DFPAgent(Agent):
|
||||
self.tp.agent.future_measurements_weights)
|
||||
|
||||
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = np.argmax(action_values)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,14 +13,15 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from agents.value_optimization_agent import *
|
||||
from agents import value_optimization_agent as voa
|
||||
|
||||
|
||||
# Distributional Deep Q Network - https://arxiv.org/pdf/1707.06887.pdf
|
||||
class DistributionalDQNAgent(ValueOptimizationAgent):
|
||||
class DistributionalDQNAgent(voa.ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.z_values = np.linspace(self.tp.agent.v_min, self.tp.agent.v_max, self.tp.agent.atoms)
|
||||
|
||||
# prediction's format is (batch,actions,atoms)
|
||||
@@ -57,4 +58,3 @@ class DistributionalDQNAgent(ValueOptimizationAgent):
|
||||
total_loss = result[0]
|
||||
|
||||
return total_loss
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,14 +13,15 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from agents.value_optimization_agent import *
|
||||
from agents import value_optimization_agent as voa
|
||||
|
||||
|
||||
# Deep Q Network - https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
|
||||
class DQNAgent(ValueOptimizationAgent):
|
||||
class DQNAgent(voa.ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch)
|
||||
|
||||
@@ -13,31 +13,37 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import collections
|
||||
import os
|
||||
|
||||
from agents.agent import *
|
||||
import pygame
|
||||
from pandas.io import pickle
|
||||
|
||||
from agents import agent
|
||||
import logger
|
||||
import utils
|
||||
|
||||
|
||||
class HumanAgent(Agent):
|
||||
class HumanAgent(agent.Agent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
agent.Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
|
||||
self.clock = pygame.time.Clock()
|
||||
self.max_fps = int(self.tp.visualization.max_fps_for_human_control)
|
||||
|
||||
screen.log_title("Human Control Mode")
|
||||
utils.screen.log_title("Human Control Mode")
|
||||
available_keys = self.env.get_available_keys()
|
||||
if available_keys:
|
||||
screen.log("Use keyboard keys to move. Press escape to quit. Available keys:")
|
||||
screen.log("")
|
||||
utils.screen.log("Use keyboard keys to move. Press escape to quit. Available keys:")
|
||||
utils.screen.log("")
|
||||
for action, key in self.env.get_available_keys():
|
||||
screen.log("\t- {}: {}".format(action, key))
|
||||
screen.separator()
|
||||
utils.screen.log("\t- {}: {}".format(action, key))
|
||||
utils.screen.separator()
|
||||
|
||||
def train(self):
|
||||
return 0
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
action = self.env.get_action_from_user()
|
||||
|
||||
# keep constant fps
|
||||
@@ -49,16 +55,16 @@ class HumanAgent(Agent):
|
||||
return action, {"action_value": 0}
|
||||
|
||||
def save_replay_buffer_and_exit(self):
|
||||
replay_buffer_path = os.path.join(logger.experiments_path, 'replay_buffer.p')
|
||||
replay_buffer_path = os.path.join(logger.logger.experiments_path, 'replay_buffer.p')
|
||||
self.memory.tp = None
|
||||
to_pickle(self.memory, replay_buffer_path)
|
||||
screen.log_title("Replay buffer was stored in {}".format(replay_buffer_path))
|
||||
pickle.to_pickle(self.memory, replay_buffer_path)
|
||||
utils.screen.log_title("Replay buffer was stored in {}".format(replay_buffer_path))
|
||||
exit()
|
||||
|
||||
def log_to_screen(self, phase):
|
||||
# log to screen
|
||||
screen.log_dict(
|
||||
OrderedDict([
|
||||
# log to utils.screen
|
||||
utils.screen.log_dict(
|
||||
collections.OrderedDict([
|
||||
("Episode", self.current_episode),
|
||||
("total reward", self.total_reward_in_current_episode),
|
||||
("steps", self.total_steps_counter)
|
||||
|
||||
@@ -13,23 +13,27 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import collections
|
||||
|
||||
from agents.agent import *
|
||||
from agents import agent
|
||||
from architectures import network_wrapper as nw
|
||||
import utils
|
||||
import logging
|
||||
|
||||
|
||||
# Imitation Agent
|
||||
class ImitationAgent(Agent):
|
||||
class ImitationAgent(agent.Agent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.main_network = NetworkWrapper(tuning_parameters, False, self.has_global, 'main',
|
||||
self.replicated_device, self.worker_device)
|
||||
agent.Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.main_network = nw.NetworkWrapper(tuning_parameters, False, self.has_global, 'main',
|
||||
self.replicated_device, self.worker_device)
|
||||
self.networks.append(self.main_network)
|
||||
self.imitation = True
|
||||
|
||||
def extract_action_values(self, prediction):
|
||||
return prediction.squeeze()
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
# convert to batch so we can run it through the network
|
||||
prediction = self.main_network.online_network.predict(self.tf_input_state(curr_state))
|
||||
|
||||
@@ -49,10 +53,10 @@ class ImitationAgent(Agent):
|
||||
|
||||
def log_to_screen(self, phase):
|
||||
# log to screen
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
# for the training phase - we log during the episode to visualize the progress in training
|
||||
screen.log_dict(
|
||||
OrderedDict([
|
||||
logging.screen.log_dict(
|
||||
collections.OrderedDict([
|
||||
("Worker", self.task_id),
|
||||
("Episode", self.current_episode),
|
||||
("Loss", self.loss.values[-1]),
|
||||
@@ -62,4 +66,4 @@ class ImitationAgent(Agent):
|
||||
)
|
||||
else:
|
||||
# for the evaluation phase - logging as in regular RL
|
||||
Agent.log_to_screen(self, phase)
|
||||
agent.Agent.log_to_screen(self, phase)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,13 +13,14 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from agents.value_optimization_agent import *
|
||||
from agents import value_optimization_agent as voa
|
||||
|
||||
|
||||
class MixedMonteCarloAgent(ValueOptimizationAgent):
|
||||
class MixedMonteCarloAgent(voa.ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.mixing_rate = tuning_parameters.agent.monte_carlo_mixing_rate
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
|
||||
@@ -14,22 +14,21 @@
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
import scipy.signal
|
||||
|
||||
from agents.value_optimization_agent import ValueOptimizationAgent
|
||||
from agents.policy_optimization_agent import PolicyOptimizationAgent
|
||||
from logger import logger
|
||||
from utils import Signal, last_sample
|
||||
from agents import value_optimization_agent as voa
|
||||
from agents import policy_optimization_agent as poa
|
||||
import logger
|
||||
import utils
|
||||
|
||||
|
||||
# N Step Q Learning Agent - https://arxiv.org/abs/1602.01783
|
||||
class NStepQAgent(ValueOptimizationAgent, PolicyOptimizationAgent):
|
||||
class NStepQAgent(voa.ValueOptimizationAgent, poa.PolicyOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id, create_target_network=True)
|
||||
voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id, create_target_network=True)
|
||||
self.last_gradient_update_step_idx = 0
|
||||
self.q_values = Signal('Q Values')
|
||||
self.unclipped_grads = Signal('Grads (unclipped)')
|
||||
self.value_loss = Signal('Value Loss')
|
||||
self.q_values = utils.Signal('Q Values')
|
||||
self.unclipped_grads = utils.Signal('Grads (unclipped)')
|
||||
self.value_loss = utils.Signal('Value Loss')
|
||||
self.signals.append(self.q_values)
|
||||
self.signals.append(self.unclipped_grads)
|
||||
self.signals.append(self.value_loss)
|
||||
@@ -57,7 +56,7 @@ class NStepQAgent(ValueOptimizationAgent, PolicyOptimizationAgent):
|
||||
if game_overs[-1]:
|
||||
R = 0
|
||||
else:
|
||||
R = np.max(self.main_network.target_network.predict(last_sample(next_states)))
|
||||
R = np.max(self.main_network.target_network.predict(utils.last_sample(next_states)))
|
||||
|
||||
for i in reversed(range(num_transitions)):
|
||||
R = rewards[i] + self.tp.agent.discount * R
|
||||
@@ -85,4 +84,4 @@ class NStepQAgent(ValueOptimizationAgent, PolicyOptimizationAgent):
|
||||
else:
|
||||
logger.create_signal_value('Update Target Network', 0, overwrite=False)
|
||||
|
||||
return PolicyOptimizationAgent.train(self)
|
||||
return poa.PolicyOptimizationAgent.train(self)
|
||||
|
||||
@@ -13,21 +13,20 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
|
||||
from agents.value_optimization_agent import ValueOptimizationAgent
|
||||
from utils import RunPhase, Signal
|
||||
import utils
|
||||
|
||||
|
||||
# Normalized Advantage Functions - https://arxiv.org/pdf/1603.00748.pdf
|
||||
class NAFAgent(ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.l_values = Signal("L")
|
||||
self.a_values = Signal("Advantage")
|
||||
self.mu_values = Signal("Action")
|
||||
self.v_values = Signal("V")
|
||||
self.l_values = utils.Signal("L")
|
||||
self.a_values = utils.Signal("Advantage")
|
||||
self.mu_values = utils.Signal("Action")
|
||||
self.v_values = utils.Signal("V")
|
||||
self.signals += [self.l_values, self.a_values, self.mu_values, self.v_values]
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
@@ -49,7 +48,7 @@ class NAFAgent(ValueOptimizationAgent):
|
||||
|
||||
return total_loss
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
assert not self.env.discrete_controls, 'NAF works only for continuous control problems'
|
||||
|
||||
# convert to batch so we can run it through the network
|
||||
@@ -60,7 +59,7 @@ class NAFAgent(ValueOptimizationAgent):
|
||||
outputs=naf_head.mu,
|
||||
squeeze_output=False,
|
||||
)
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = action_values
|
||||
|
||||
@@ -13,19 +13,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
|
||||
from agents.value_optimization_agent import ValueOptimizationAgent
|
||||
from agents import value_optimization_agent as voa
|
||||
from logger import screen
|
||||
from utils import RunPhase
|
||||
import utils
|
||||
|
||||
|
||||
# Neural Episodic Control - https://arxiv.org/pdf/1703.01988.pdf
|
||||
class NECAgent(ValueOptimizationAgent):
|
||||
class NECAgent(voa.ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
||||
create_target_network=False)
|
||||
voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
||||
create_target_network=False)
|
||||
self.current_episode_state_embeddings = []
|
||||
self.training_started = False
|
||||
|
||||
@@ -52,7 +49,7 @@ class NECAgent(ValueOptimizationAgent):
|
||||
|
||||
return total_loss
|
||||
|
||||
def act(self, phase=RunPhase.TRAIN):
|
||||
def act(self, phase=utils.RunPhase.TRAIN):
|
||||
if self.in_heatup:
|
||||
# get embedding in heatup (otherwise we get it through choose_action)
|
||||
embedding = self.main_network.online_network.predict(
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,14 +13,15 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from agents.value_optimization_agent import *
|
||||
from agents import value_optimization_agent as voa
|
||||
|
||||
|
||||
# Persistent Advantage Learning - https://arxiv.org/pdf/1512.04860.pdf
|
||||
class PALAgent(ValueOptimizationAgent):
|
||||
class PALAgent(voa.ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.alpha = tuning_parameters.agent.pal_alpha
|
||||
self.persistent = tuning_parameters.agent.persistent_advantage_learning
|
||||
self.monte_carlo_mixing_rate = tuning_parameters.agent.monte_carlo_mixing_rate
|
||||
|
||||
@@ -13,25 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from agents.policy_optimization_agent import *
|
||||
import numpy as np
|
||||
from logger import *
|
||||
import tensorflow as tf
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
except:
|
||||
from logger import failed_imports
|
||||
failed_imports.append("matplotlib")
|
||||
|
||||
from utils import *
|
||||
from agents import policy_optimization_agent as poa
|
||||
import logger
|
||||
import utils
|
||||
|
||||
|
||||
class PolicyGradientsAgent(PolicyOptimizationAgent):
|
||||
class PolicyGradientsAgent(poa.PolicyOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
PolicyOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.returns_mean = Signal('Returns Mean')
|
||||
self.returns_variance = Signal('Returns Variance')
|
||||
poa.PolicyOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.returns_mean = utils.Signal('Returns Mean')
|
||||
self.returns_variance = utils.Signal('Returns Variance')
|
||||
self.signals.append(self.returns_mean)
|
||||
self.signals.append(self.returns_variance)
|
||||
self.last_gradient_update_step_idx = 0
|
||||
@@ -41,21 +34,21 @@ class PolicyGradientsAgent(PolicyOptimizationAgent):
|
||||
current_states, next_states, actions, rewards, game_overs, total_returns = self.extract_batch(batch)
|
||||
|
||||
for i in reversed(range(len(total_returns))):
|
||||
if self.policy_gradient_rescaler == PolicyGradientRescaler.TOTAL_RETURN:
|
||||
if self.policy_gradient_rescaler == poa.PolicyGradientRescaler.TOTAL_RETURN:
|
||||
total_returns[i] = total_returns[0]
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN:
|
||||
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.FUTURE_RETURN:
|
||||
# just take the total return as it is
|
||||
pass
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_EPISODE:
|
||||
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_EPISODE:
|
||||
# we can get a single transition episode while playing Doom Basic, causing the std to be 0
|
||||
if self.std_discounted_return != 0:
|
||||
total_returns[i] = (total_returns[i] - self.mean_discounted_return) / self.std_discounted_return
|
||||
else:
|
||||
total_returns[i] = 0
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_TIMESTEP:
|
||||
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_TIMESTEP:
|
||||
total_returns[i] -= self.mean_return_over_multiple_episodes[i]
|
||||
else:
|
||||
screen.warning("WARNING: The requested policy gradient rescaler is not available")
|
||||
logger.screen.warning("WARNING: The requested policy gradient rescaler is not available")
|
||||
|
||||
targets = total_returns
|
||||
if not self.env.discrete_controls and len(actions.shape) < 2:
|
||||
@@ -69,12 +62,12 @@ class PolicyGradientsAgent(PolicyOptimizationAgent):
|
||||
|
||||
return total_loss
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
# convert to batch so we can run it through the network
|
||||
if self.env.discrete_controls:
|
||||
# DISCRETE
|
||||
action_values = self.main_network.online_network.predict(self.tf_input_state(curr_state)).squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = np.argmax(action_values)
|
||||
@@ -84,7 +77,7 @@ class PolicyGradientsAgent(PolicyOptimizationAgent):
|
||||
# CONTINUOUS
|
||||
result = self.main_network.online_network.predict(self.tf_input_state(curr_state))
|
||||
action_values = result[0].squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = action_values
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,12 +13,17 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import collections
|
||||
|
||||
from agents.agent import *
|
||||
from memories.memory import Episode
|
||||
import numpy as np
|
||||
|
||||
from agents import agent
|
||||
from architectures import network_wrapper as nw
|
||||
import logger
|
||||
import utils
|
||||
|
||||
|
||||
class PolicyGradientRescaler(Enum):
|
||||
class PolicyGradientRescaler(utils.Enum):
|
||||
TOTAL_RETURN = 0
|
||||
FUTURE_RETURN = 1
|
||||
FUTURE_RETURN_NORMALIZED_BY_EPISODE = 2
|
||||
@@ -30,11 +35,11 @@ class PolicyGradientRescaler(Enum):
|
||||
GAE = 8
|
||||
|
||||
|
||||
class PolicyOptimizationAgent(Agent):
|
||||
class PolicyOptimizationAgent(agent.Agent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0, create_target_network=False):
|
||||
Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.main_network = NetworkWrapper(tuning_parameters, create_target_network, self.has_global, 'main',
|
||||
self.replicated_device, self.worker_device)
|
||||
agent.Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.main_network = nw.NetworkWrapper(tuning_parameters, create_target_network, self.has_global, 'main',
|
||||
self.replicated_device, self.worker_device)
|
||||
self.networks.append(self.main_network)
|
||||
|
||||
self.policy_gradient_rescaler = PolicyGradientRescaler().get(self.tp.agent.policy_gradient_rescaler)
|
||||
@@ -44,7 +49,7 @@ class PolicyOptimizationAgent(Agent):
|
||||
self.max_episode_length = 100000
|
||||
self.mean_return_over_multiple_episodes = np.zeros(self.max_episode_length)
|
||||
self.num_episodes_where_step_has_been_seen = np.zeros(self.max_episode_length)
|
||||
self.entropy = Signal('Entropy')
|
||||
self.entropy = utils.Signal('Entropy')
|
||||
self.signals.append(self.entropy)
|
||||
|
||||
self.reset_game(do_not_reset_env=True)
|
||||
@@ -52,8 +57,8 @@ class PolicyOptimizationAgent(Agent):
|
||||
def log_to_screen(self, phase):
|
||||
# log to screen
|
||||
if self.current_episode > 0:
|
||||
screen.log_dict(
|
||||
OrderedDict([
|
||||
logger.screen.log_dict(
|
||||
collections.OrderedDict([
|
||||
("Worker", self.task_id),
|
||||
("Episode", self.current_episode),
|
||||
("total reward", self.total_reward_in_current_episode),
|
||||
|
||||
@@ -13,36 +13,44 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import collections
|
||||
import copy
|
||||
|
||||
from agents.actor_critic_agent import *
|
||||
from random import shuffle
|
||||
import numpy as np
|
||||
|
||||
from agents import actor_critic_agent as aca
|
||||
from agents import policy_optimization_agent as poa
|
||||
from architectures import network_wrapper as nw
|
||||
import configurations
|
||||
import logger
|
||||
import utils
|
||||
|
||||
|
||||
# Proximal Policy Optimization - https://arxiv.org/pdf/1707.06347.pdf
|
||||
class PPOAgent(ActorCriticAgent):
|
||||
class PPOAgent(aca.ActorCriticAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
||||
create_target_network=True)
|
||||
aca.ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
||||
create_target_network=True)
|
||||
self.critic_network = self.main_network
|
||||
|
||||
# define the policy network
|
||||
tuning_parameters.agent.input_types = {'observation': InputTypes.Observation}
|
||||
tuning_parameters.agent.output_types = [OutputTypes.PPO]
|
||||
tuning_parameters.agent.input_types = {'observation': configurations.InputTypes.Observation}
|
||||
tuning_parameters.agent.output_types = [configurations.OutputTypes.PPO]
|
||||
tuning_parameters.agent.optimizer_type = 'Adam'
|
||||
tuning_parameters.agent.l2_regularization = 0
|
||||
self.policy_network = NetworkWrapper(tuning_parameters, True, self.has_global, 'policy',
|
||||
self.replicated_device, self.worker_device)
|
||||
self.policy_network = nw.NetworkWrapper(tuning_parameters, True, self.has_global, 'policy',
|
||||
self.replicated_device, self.worker_device)
|
||||
self.networks.append(self.policy_network)
|
||||
|
||||
# signals definition
|
||||
self.value_loss = Signal('Value Loss')
|
||||
self.value_loss = utils.Signal('Value Loss')
|
||||
self.signals.append(self.value_loss)
|
||||
self.policy_loss = Signal('Policy Loss')
|
||||
self.policy_loss = utils.Signal('Policy Loss')
|
||||
self.signals.append(self.policy_loss)
|
||||
self.kl_divergence = Signal('KL Divergence')
|
||||
self.kl_divergence = utils.Signal('KL Divergence')
|
||||
self.signals.append(self.kl_divergence)
|
||||
self.total_kl_divergence_during_training_process = 0.0
|
||||
self.unclipped_grads = Signal('Grads (unclipped)')
|
||||
self.unclipped_grads = utils.Signal('Grads (unclipped)')
|
||||
self.signals.append(self.unclipped_grads)
|
||||
|
||||
self.reset_game(do_not_reset_env=True)
|
||||
@@ -57,9 +65,9 @@ class PPOAgent(ActorCriticAgent):
|
||||
|
||||
# calculate advantages
|
||||
advantages = []
|
||||
if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE:
|
||||
if self.policy_gradient_rescaler == poa.PolicyGradientRescaler.A_VALUE:
|
||||
advantages = total_return - current_state_values
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE:
|
||||
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.GAE:
|
||||
# get bootstraps
|
||||
episode_start_idx = 0
|
||||
advantages = np.array([])
|
||||
@@ -76,7 +84,7 @@ class PPOAgent(ActorCriticAgent):
|
||||
episode_start_idx = idx + 1
|
||||
advantages = np.append(advantages, rollout_advantages)
|
||||
else:
|
||||
screen.warning("WARNING: The requested policy gradient rescaler is not available")
|
||||
logger.screen.warning("WARNING: The requested policy gradient rescaler is not available")
|
||||
|
||||
# standardize
|
||||
advantages = (advantages - np.mean(advantages)) / np.std(advantages)
|
||||
@@ -107,7 +115,7 @@ class PPOAgent(ActorCriticAgent):
|
||||
for k, v in current_states.items()
|
||||
}
|
||||
total_return_batch = total_return[i * batch_size:(i + 1) * batch_size]
|
||||
old_policy_values = force_list(self.critic_network.target_network.predict(
|
||||
old_policy_values = utils.force_list(self.critic_network.target_network.predict(
|
||||
current_states_batch).squeeze())
|
||||
if self.critic_network.online_network.optimizer_type != 'LBFGS':
|
||||
targets = total_return_batch
|
||||
@@ -155,7 +163,7 @@ class PPOAgent(ActorCriticAgent):
|
||||
actions = np.expand_dims(actions, -1)
|
||||
|
||||
# get old policy probabilities and distribution
|
||||
old_policy = force_list(self.policy_network.target_network.predict(current_states))
|
||||
old_policy = utils.force_list(self.policy_network.target_network.predict(current_states))
|
||||
|
||||
# calculate gradients and apply on both the local policy network and on the global policy network
|
||||
fetches = [self.policy_network.online_network.output_heads[0].kl_divergence,
|
||||
@@ -196,8 +204,8 @@ class PPOAgent(ActorCriticAgent):
|
||||
curr_learning_rate = self.tp.learning_rate
|
||||
|
||||
# log training parameters
|
||||
screen.log_dict(
|
||||
OrderedDict([
|
||||
logger.screen.log_dict(
|
||||
collections.OrderedDict([
|
||||
("Surrogate loss", loss['policy_losses'][0]),
|
||||
("KL divergence", loss['fetch_result'][0]),
|
||||
("Entropy", loss['fetch_result'][1]),
|
||||
@@ -215,7 +223,7 @@ class PPOAgent(ActorCriticAgent):
|
||||
def update_kl_coefficient(self):
|
||||
# John Schulman takes the mean kl divergence only over the last epoch which is strange but we will follow
|
||||
# his implementation for now because we know it works well
|
||||
screen.log_title("KL = {}".format(self.total_kl_divergence_during_training_process))
|
||||
logger.screen.log_title("KL = {}".format(self.total_kl_divergence_during_training_process))
|
||||
|
||||
# update kl coefficient
|
||||
kl_target = self.tp.agent.target_kl_divergence
|
||||
@@ -236,7 +244,7 @@ class PPOAgent(ActorCriticAgent):
|
||||
new_kl_coefficient,
|
||||
self.policy_network.online_network.output_heads[0].kl_coefficient_ph)
|
||||
|
||||
screen.log_title("KL penalty coefficient change = {} -> {}".format(kl_coefficient, new_kl_coefficient))
|
||||
logger.screen.log_title("KL penalty coefficient change = {} -> {}".format(kl_coefficient, new_kl_coefficient))
|
||||
|
||||
def post_training_commands(self):
|
||||
if self.tp.agent.use_kl_regularization:
|
||||
@@ -264,12 +272,12 @@ class PPOAgent(ActorCriticAgent):
|
||||
self.update_log() # should be done in order to update the data that has been accumulated * while not playing *
|
||||
return np.append(value_loss, policy_loss)
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
if self.env.discrete_controls:
|
||||
# DISCRETE
|
||||
action_values = self.policy_network.online_network.predict(self.tf_input_state(curr_state)).squeeze()
|
||||
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = np.argmax(action_values)
|
||||
@@ -280,7 +288,7 @@ class PPOAgent(ActorCriticAgent):
|
||||
action_values_mean, action_values_std = self.policy_network.online_network.predict(self.tf_input_state(curr_state))
|
||||
action_values_mean = action_values_mean.squeeze()
|
||||
action_values_std = action_values_std.squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = np.squeeze(np.random.randn(1, self.action_space_size) * action_values_std + action_values_mean)
|
||||
else:
|
||||
action = action_values_mean
|
||||
|
||||
@@ -13,14 +13,15 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from agents.value_optimization_agent import *
|
||||
from agents import value_optimization_agent as voa
|
||||
|
||||
|
||||
# Quantile Regression Deep Q Network - https://arxiv.org/pdf/1710.10044v1.pdf
|
||||
class QuantileRegressionDQNAgent(ValueOptimizationAgent):
|
||||
class QuantileRegressionDQNAgent(voa.ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.quantile_probabilities = np.ones(self.tp.agent.atoms) / float(self.tp.agent.atoms)
|
||||
|
||||
# prediction's format is (batch,actions,atoms)
|
||||
|
||||
@@ -13,21 +13,20 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
|
||||
from agents.agent import Agent
|
||||
from architectures.network_wrapper import NetworkWrapper
|
||||
from utils import RunPhase, Signal
|
||||
from agents import agent
|
||||
from architectures import network_wrapper as nw
|
||||
import utils
|
||||
|
||||
|
||||
class ValueOptimizationAgent(Agent):
|
||||
class ValueOptimizationAgent(agent.Agent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0, create_target_network=True):
|
||||
Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.main_network = NetworkWrapper(tuning_parameters, create_target_network, self.has_global, 'main',
|
||||
self.replicated_device, self.worker_device)
|
||||
agent.Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.main_network = nw.NetworkWrapper(tuning_parameters, create_target_network, self.has_global, 'main',
|
||||
self.replicated_device, self.worker_device)
|
||||
self.networks.append(self.main_network)
|
||||
self.q_values = Signal("Q")
|
||||
self.q_values = utils.Signal("Q")
|
||||
self.signals.append(self.q_values)
|
||||
|
||||
self.reset_game(do_not_reset_env=True)
|
||||
@@ -47,12 +46,12 @@ class ValueOptimizationAgent(Agent):
|
||||
'require exploration policies which return a single action.'
|
||||
).format(policy.__class__.__name__))
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
prediction = self.get_prediction(curr_state)
|
||||
actions_q_values = self.get_q_values(prediction)
|
||||
|
||||
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
exploration_policy = self.exploration_policy
|
||||
else:
|
||||
exploration_policy = self.evaluation_exploration_policy
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,19 +13,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from architectures.architecture import *
|
||||
from logger import failed_imports
|
||||
try:
|
||||
from architectures.tensorflow_components.general_network import *
|
||||
from architectures.tensorflow_components.architecture import *
|
||||
except ImportError:
|
||||
failed_imports.append("TensorFlow")
|
||||
import logger
|
||||
|
||||
try:
|
||||
from architectures.neon_components.general_network import *
|
||||
from architectures.neon_components.architecture import *
|
||||
from architectures.tensorflow_components import general_network as ts_gn
|
||||
from architectures.tensorflow_components import architecture as ts_arch
|
||||
except ImportError:
|
||||
failed_imports.append("Neon")
|
||||
logger.failed_imports.append("TensorFlow")
|
||||
|
||||
from architectures.network_wrapper import *
|
||||
try:
|
||||
from architectures.neon_components import general_network as neon_gn
|
||||
from architectures.neon_components import architecture as neon_arch
|
||||
except ImportError:
|
||||
logger.failed_imports.append("Neon")
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -14,8 +14,6 @@
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from configurations import Preset
|
||||
|
||||
|
||||
class Architecture(object):
|
||||
def __init__(self, tuning_parameters, name=""):
|
||||
@@ -73,4 +71,4 @@ class Architecture(object):
|
||||
pass
|
||||
|
||||
def set_variable_value(self, assign_op, value, placeholder=None):
|
||||
pass
|
||||
pass
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,19 +13,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import sys
|
||||
import copy
|
||||
from ngraph.frontends.neon import *
|
||||
import ngraph as ng
|
||||
from architectures.architecture import *
|
||||
import numpy as np
|
||||
from utils import *
|
||||
|
||||
from architectures import architecture
|
||||
import utils
|
||||
|
||||
|
||||
class NeonArchitecture(Architecture):
|
||||
class NeonArchitecture(architecture.Architecture):
|
||||
def __init__(self, tuning_parameters, name="", global_network=None, network_is_local=True):
|
||||
Architecture.__init__(self, tuning_parameters, name)
|
||||
architecture.Architecture.__init__(self, tuning_parameters, name)
|
||||
assert tuning_parameters.agent.neon_support, 'Neon is not supported for this agent'
|
||||
self.clip_error = tuning_parameters.clip_gradients
|
||||
self.total_loss = None
|
||||
@@ -113,8 +110,8 @@ class NeonArchitecture(Architecture):
|
||||
def accumulate_gradients(self, inputs, targets):
|
||||
# Neon doesn't currently allow separating the grads calculation and grad apply operations
|
||||
# so this feature is not currently available. instead we do a full training iteration
|
||||
inputs = force_list(inputs)
|
||||
targets = force_list(targets)
|
||||
inputs = utils.force_list(inputs)
|
||||
targets = utils.force_list(targets)
|
||||
|
||||
for idx, input in enumerate(inputs):
|
||||
inputs[idx] = input.swapaxes(0, -1)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,10 +13,9 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import ngraph.frontends.neon as neon
|
||||
import ngraph as ng
|
||||
from ngraph.util.names import name_scope
|
||||
import ngraph.frontends.neon as neon
|
||||
import ngraph.util.names as ngraph_names
|
||||
|
||||
|
||||
class InputEmbedder(object):
|
||||
@@ -31,7 +30,7 @@ class InputEmbedder(object):
|
||||
self.output = None
|
||||
|
||||
def __call__(self, prev_input_placeholder=None):
|
||||
with name_scope(self.get_name()):
|
||||
with ngraph_names.name_scope(self.get_name()):
|
||||
# create the input axes
|
||||
axes = []
|
||||
if len(self.input_size) == 2:
|
||||
|
||||
@@ -13,15 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import ngraph as ng
|
||||
from ngraph.frontends import neon
|
||||
from ngraph.util import names as ngraph_names
|
||||
|
||||
from architectures.neon_components.embedders import *
|
||||
from architectures.neon_components.heads import *
|
||||
from architectures.neon_components.middleware import *
|
||||
from architectures.neon_components.architecture import *
|
||||
from configurations import InputTypes, OutputTypes, MiddlewareTypes
|
||||
from architectures.neon_components import architecture
|
||||
from architectures.neon_components import embedders
|
||||
from architectures.neon_components import middleware
|
||||
from architectures.neon_components import heads
|
||||
import configurations as conf
|
||||
|
||||
|
||||
class GeneralNeonNetwork(NeonArchitecture):
|
||||
class GeneralNeonNetwork(architecture.NeonArchitecture):
|
||||
def __init__(self, tuning_parameters, name="", global_network=None, network_is_local=True):
|
||||
self.global_network = global_network
|
||||
self.network_is_local = network_is_local
|
||||
@@ -34,7 +37,7 @@ class GeneralNeonNetwork(NeonArchitecture):
|
||||
self.activation_function = self.get_activation_function(
|
||||
tuning_parameters.agent.hidden_layers_activation_function)
|
||||
|
||||
NeonArchitecture.__init__(self, tuning_parameters, name, global_network, network_is_local)
|
||||
architecture.NeonArchitecture.__init__(self, tuning_parameters, name, global_network, network_is_local)
|
||||
|
||||
def get_activation_function(self, activation_function_string):
|
||||
activation_functions = {
|
||||
@@ -53,36 +56,36 @@ class GeneralNeonNetwork(NeonArchitecture):
|
||||
# the observation can be either an image or a vector
|
||||
def get_observation_embedding(with_timestep=False):
|
||||
if self.input_height > 1:
|
||||
return ImageEmbedder((self.input_depth, self.input_height, self.input_width), self.batch_size,
|
||||
name="observation")
|
||||
return embedders.ImageEmbedder((self.input_depth, self.input_height, self.input_width), self.batch_size,
|
||||
name="observation")
|
||||
else:
|
||||
return VectorEmbedder((self.input_depth, self.input_width + int(with_timestep)), self.batch_size,
|
||||
name="observation")
|
||||
return embedders.VectorEmbedder((self.input_depth, self.input_width + int(with_timestep)), self.batch_size,
|
||||
name="observation")
|
||||
|
||||
input_mapping = {
|
||||
InputTypes.Observation: get_observation_embedding(),
|
||||
InputTypes.Measurements: VectorEmbedder(self.measurements_size, self.batch_size, name="measurements"),
|
||||
InputTypes.GoalVector: VectorEmbedder(self.measurements_size, self.batch_size, name="goal_vector"),
|
||||
InputTypes.Action: VectorEmbedder((self.num_actions,), self.batch_size, name="action"),
|
||||
InputTypes.TimedObservation: get_observation_embedding(with_timestep=True),
|
||||
conf.InputTypes.Observation: get_observation_embedding(),
|
||||
conf.InputTypes.Measurements: embedders.VectorEmbedder(self.measurements_size, self.batch_size, name="measurements"),
|
||||
conf.InputTypes.GoalVector: embedders.VectorEmbedder(self.measurements_size, self.batch_size, name="goal_vector"),
|
||||
conf.InputTypes.Action: embedders.VectorEmbedder((self.num_actions,), self.batch_size, name="action"),
|
||||
conf.InputTypes.TimedObservation: get_observation_embedding(with_timestep=True),
|
||||
}
|
||||
return input_mapping[embedder_type]
|
||||
|
||||
def get_middleware_embedder(self, middleware_type):
|
||||
return {MiddlewareTypes.LSTM: None, # LSTM over Neon is currently not supported in Coach
|
||||
MiddlewareTypes.FC: FC_Embedder}.get(middleware_type)(self.activation_function)
|
||||
return {conf.MiddlewareTypes.LSTM: None, # LSTM over Neon is currently not supported in Coach
|
||||
conf.MiddlewareTypes.FC: middleware.FC_Embedder}.get(middleware_type)(self.activation_function)
|
||||
|
||||
def get_output_head(self, head_type, head_idx, loss_weight=1.):
|
||||
output_mapping = {
|
||||
OutputTypes.Q: QHead,
|
||||
OutputTypes.DuelingQ: DuelingQHead,
|
||||
OutputTypes.V: None, # Policy Optimization algorithms over Neon are currently not supported in Coach
|
||||
OutputTypes.Pi: None, # Policy Optimization algorithms over Neon are currently not supported in Coach
|
||||
OutputTypes.MeasurementsPrediction: None, # DFP over Neon is currently not supported in Coach
|
||||
OutputTypes.DNDQ: None, # NEC over Neon is currently not supported in Coach
|
||||
OutputTypes.NAF: None, # NAF over Neon is currently not supported in Coach
|
||||
OutputTypes.PPO: None, # PPO over Neon is currently not supported in Coach
|
||||
OutputTypes.PPO_V: None # PPO over Neon is currently not supported in Coach
|
||||
conf.OutputTypes.Q: heads.QHead,
|
||||
conf.OutputTypes.DuelingQ: heads.DuelingQHead,
|
||||
conf.OutputTypes.V: None, # Policy Optimization algorithms over Neon are currently not supported in Coach
|
||||
conf.OutputTypes.Pi: None, # Policy Optimization algorithms over Neon are currently not supported in Coach
|
||||
conf.OutputTypes.MeasurementsPrediction: None, # DFP over Neon is currently not supported in Coach
|
||||
conf.OutputTypes.DNDQ: None, # NEC over Neon is currently not supported in Coach
|
||||
conf.OutputTypes.NAF: None, # NAF over Neon is currently not supported in Coach
|
||||
conf.OutputTypes.PPO: None, # PPO over Neon is currently not supported in Coach
|
||||
conf.OutputTypes.PPO_V: None # PPO over Neon is currently not supported in Coach
|
||||
}
|
||||
return output_mapping[head_type](self.tp, head_idx, loss_weight, self.network_is_local)
|
||||
|
||||
@@ -104,7 +107,7 @@ class GeneralNeonNetwork(NeonArchitecture):
|
||||
done_creating_input_placeholders = False
|
||||
|
||||
for network_idx in range(self.num_networks):
|
||||
with name_scope('network_{}'.format(network_idx)):
|
||||
with ngraph_names.name_scope('network_{}'.format(network_idx)):
|
||||
####################
|
||||
# Input Embeddings #
|
||||
####################
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,13 +13,12 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import ngraph as ng
|
||||
from ngraph.util.names import name_scope
|
||||
import ngraph.frontends.neon as neon
|
||||
import numpy as np
|
||||
from utils import force_list
|
||||
from architectures.neon_components.losses import *
|
||||
from ngraph.frontends import neon
|
||||
from ngraph.util import names as ngraph_names
|
||||
|
||||
import utils
|
||||
from architectures.neon_components import losses
|
||||
|
||||
|
||||
class Head(object):
|
||||
@@ -30,7 +29,7 @@ class Head(object):
|
||||
self.loss = []
|
||||
self.loss_type = []
|
||||
self.regularizations = []
|
||||
self.loss_weight = force_list(loss_weight)
|
||||
self.loss_weight = utils.force_list(loss_weight)
|
||||
self.weights_init = neon.GlorotInit()
|
||||
self.biases_init = neon.ConstantInit()
|
||||
self.target = []
|
||||
@@ -44,15 +43,15 @@ class Head(object):
|
||||
:param input_layer: the input to the graph
|
||||
:return: the output of the last layer and the target placeholder
|
||||
"""
|
||||
with name_scope(self.get_name()):
|
||||
with ngraph_names.name_scope(self.get_name()):
|
||||
self._build_module(input_layer)
|
||||
|
||||
self.output = force_list(self.output)
|
||||
self.target = force_list(self.target)
|
||||
self.input = force_list(self.input)
|
||||
self.loss_type = force_list(self.loss_type)
|
||||
self.loss = force_list(self.loss)
|
||||
self.regularizations = force_list(self.regularizations)
|
||||
self.output = utils.force_list(self.output)
|
||||
self.target = utils.force_list(self.target)
|
||||
self.input = utils.force_list(self.input)
|
||||
self.loss_type = utils.force_list(self.loss_type)
|
||||
self.loss = utils.force_list(self.loss)
|
||||
self.regularizations = utils.force_list(self.regularizations)
|
||||
if self.is_local:
|
||||
self.set_loss()
|
||||
|
||||
@@ -106,7 +105,7 @@ class QHead(Head):
|
||||
if tuning_parameters.agent.replace_mse_with_huber_loss:
|
||||
raise Exception("huber loss is not supported in neon")
|
||||
else:
|
||||
self.loss_type = mean_squared_error
|
||||
self.loss_type = losses.mean_squared_error
|
||||
|
||||
def _build_module(self, input_layer):
|
||||
# Standard Q Network
|
||||
@@ -159,7 +158,7 @@ class MeasurementsPredictionHead(Head):
|
||||
if tuning_parameters.agent.replace_mse_with_huber_loss:
|
||||
raise Exception("huber loss is not supported in neon")
|
||||
else:
|
||||
self.loss_type = mean_squared_error
|
||||
self.loss_type = losses.mean_squared_error
|
||||
|
||||
def _build_module(self, input_layer):
|
||||
# This is almost exactly the same as Dueling Network but we predict the future measurements for each action
|
||||
@@ -167,7 +166,7 @@ class MeasurementsPredictionHead(Head):
|
||||
multistep_measurements_size = self.measurements_size[0] * self.num_predicted_steps_ahead
|
||||
|
||||
# actions expectation tower (expectation stream) - E
|
||||
with name_scope("expectation_stream"):
|
||||
with ngraph_names.name_scope("expectation_stream"):
|
||||
expectation_stream = neon.Sequential([
|
||||
neon.Affine(nout=256, activation=neon.Rectlin(),
|
||||
weight_init=self.weights_init, bias_init=self.biases_init),
|
||||
@@ -176,7 +175,7 @@ class MeasurementsPredictionHead(Head):
|
||||
])(input_layer)
|
||||
|
||||
# action fine differences tower (action stream) - A
|
||||
with name_scope("action_stream"):
|
||||
with ngraph_names.name_scope("action_stream"):
|
||||
action_stream_unnormalized = neon.Sequential([
|
||||
neon.Affine(nout=256, activation=neon.Rectlin(),
|
||||
weight_init=self.weights_init, bias_init=self.biases_init),
|
||||
@@ -191,4 +190,3 @@ class MeasurementsPredictionHead(Head):
|
||||
|
||||
# merge to future measurements predictions
|
||||
self.output = repeated_expectation_stream + action_stream
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,15 +13,12 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import ngraph as ng
|
||||
import ngraph.frontends.neon as neon
|
||||
from ngraph.util.names import name_scope
|
||||
import numpy as np
|
||||
from ngraph.util import names as ngraph_names
|
||||
|
||||
|
||||
def mean_squared_error(targets, outputs, weights=1.0, scope=""):
|
||||
with name_scope(scope):
|
||||
with ngraph_names.name_scope(scope):
|
||||
# TODO: reduce mean over the action axis
|
||||
loss = ng.squared_L2(targets - outputs)
|
||||
weighted_loss = loss * weights
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,11 +13,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import ngraph as ng
|
||||
import ngraph.frontends.neon as neon
|
||||
from ngraph.util.names import name_scope
|
||||
import numpy as np
|
||||
from ngraph.util import names as ngraph_names
|
||||
|
||||
|
||||
class MiddlewareEmbedder(object):
|
||||
@@ -30,7 +27,7 @@ class MiddlewareEmbedder(object):
|
||||
self.activation_function = activation_function
|
||||
|
||||
def __call__(self, input_layer):
|
||||
with name_scope(self.get_name()):
|
||||
with ngraph_names.name_scope(self.get_name()):
|
||||
self.input = input_layer
|
||||
self._build_module()
|
||||
|
||||
|
||||
@@ -13,20 +13,21 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import os
|
||||
import collections
|
||||
|
||||
from collections import OrderedDict
|
||||
from configurations import Preset, Frameworks
|
||||
from logger import *
|
||||
import configurations as conf
|
||||
import logger
|
||||
try:
|
||||
import tensorflow as tf
|
||||
from architectures.tensorflow_components.general_network import GeneralTensorFlowNetwork
|
||||
from architectures.tensorflow_components import general_network as tf_net #import GeneralTensorFlowNetwork
|
||||
except ImportError:
|
||||
failed_imports.append("TensorFlow")
|
||||
logger.failed_imports.append("TensorFlow")
|
||||
|
||||
try:
|
||||
from architectures.neon_components.general_network import GeneralNeonNetwork
|
||||
from architectures.neon_components import general_network as neon_net
|
||||
except ImportError:
|
||||
failed_imports.append("Neon")
|
||||
logger.failed_imports.append("Neon")
|
||||
|
||||
|
||||
class NetworkWrapper(object):
|
||||
@@ -50,12 +51,12 @@ class NetworkWrapper(object):
|
||||
self.name = name
|
||||
self.sess = tuning_parameters.sess
|
||||
|
||||
if self.tp.framework == Frameworks.TensorFlow:
|
||||
general_network = GeneralTensorFlowNetwork
|
||||
elif self.tp.framework == Frameworks.Neon:
|
||||
general_network = GeneralNeonNetwork
|
||||
if self.tp.framework == conf.Frameworks.TensorFlow:
|
||||
general_network = tf_net.GeneralTensorFlowNetwork
|
||||
elif self.tp.framework == conf.Frameworks.Neon:
|
||||
general_network = neon_net.GeneralNeonNetwork
|
||||
else:
|
||||
raise Exception("{} Framework is not supported".format(Frameworks().to_string(self.tp.framework)))
|
||||
raise Exception("{} Framework is not supported".format(conf.Frameworks().to_string(self.tp.framework)))
|
||||
|
||||
# Global network - the main network shared between threads
|
||||
self.global_network = None
|
||||
@@ -77,13 +78,13 @@ class NetworkWrapper(object):
|
||||
self.target_network = general_network(tuning_parameters, '{}/target'.format(name),
|
||||
network_is_local=True)
|
||||
|
||||
if not self.tp.distributed and self.tp.framework == Frameworks.TensorFlow:
|
||||
if not self.tp.distributed and self.tp.framework == conf.Frameworks.TensorFlow:
|
||||
variables_to_restore = tf.global_variables()
|
||||
variables_to_restore = [v for v in variables_to_restore if '/online' in v.name]
|
||||
self.model_saver = tf.train.Saver(variables_to_restore)
|
||||
if self.tp.sess and self.tp.checkpoint_restore_dir:
|
||||
checkpoint = tf.train.latest_checkpoint(self.tp.checkpoint_restore_dir)
|
||||
screen.log_title("Loading checkpoint: {}".format(checkpoint))
|
||||
logger.screen.log_title("Loading checkpoint: {}".format(checkpoint))
|
||||
self.model_saver.restore(self.tp.sess, checkpoint)
|
||||
self.update_target_network()
|
||||
|
||||
@@ -178,8 +179,8 @@ class NetworkWrapper(object):
|
||||
def save_model(self, model_id):
|
||||
saved_model_path = self.model_saver.save(self.tp.sess, os.path.join(self.tp.save_model_dir,
|
||||
str(model_id) + '.ckpt'))
|
||||
screen.log_dict(
|
||||
OrderedDict([
|
||||
logger.screen.log_dict(
|
||||
collections.OrderedDict([
|
||||
("Saving model", saved_model_path),
|
||||
]),
|
||||
prefix="Checkpoint"
|
||||
|
||||
@@ -15,12 +15,11 @@
|
||||
#
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from architectures.architecture import Architecture
|
||||
from utils import force_list, squeeze_list
|
||||
from configurations import Preset, MiddlewareTypes
|
||||
from architectures import architecture
|
||||
import configurations as conf
|
||||
import utils
|
||||
|
||||
def variable_summaries(var):
|
||||
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
|
||||
@@ -37,14 +36,14 @@ def variable_summaries(var):
|
||||
tf.summary.scalar('min', tf.reduce_min(var))
|
||||
tf.summary.histogram('histogram', var)
|
||||
|
||||
class TensorFlowArchitecture(Architecture):
|
||||
class TensorFlowArchitecture(architecture.Architecture):
|
||||
def __init__(self, tuning_parameters, name="", global_network=None, network_is_local=True):
|
||||
"""
|
||||
:param tuning_parameters: The parameters used for running the algorithm
|
||||
:type tuning_parameters: Preset
|
||||
:param name: The name of the network
|
||||
"""
|
||||
Architecture.__init__(self, tuning_parameters, name)
|
||||
architecture.Architecture.__init__(self, tuning_parameters, name)
|
||||
self.middleware_embedder = None
|
||||
self.network_is_local = network_is_local
|
||||
assert tuning_parameters.agent.tensorflow_support, 'TensorFlow is not supported for this agent'
|
||||
@@ -174,7 +173,7 @@ class TensorFlowArchitecture(Architecture):
|
||||
feed_dict = self._feed_dict(inputs)
|
||||
|
||||
# feed targets
|
||||
targets = force_list(targets)
|
||||
targets = utils.force_list(targets)
|
||||
for placeholder_idx, target in enumerate(targets):
|
||||
feed_dict[self.targets[placeholder_idx]] = target
|
||||
|
||||
@@ -186,13 +185,13 @@ class TensorFlowArchitecture(Architecture):
|
||||
else:
|
||||
fetches.append(self.tensor_gradients)
|
||||
fetches += [self.total_loss, self.losses]
|
||||
if self.tp.agent.middleware_type == MiddlewareTypes.LSTM:
|
||||
if self.tp.agent.middleware_type == conf.MiddlewareTypes.LSTM:
|
||||
fetches.append(self.middleware_embedder.state_out)
|
||||
additional_fetches_start_idx = len(fetches)
|
||||
fetches += additional_fetches
|
||||
|
||||
# feed the lstm state if necessary
|
||||
if self.tp.agent.middleware_type == MiddlewareTypes.LSTM:
|
||||
if self.tp.agent.middleware_type == conf.MiddlewareTypes.LSTM:
|
||||
# we can't always assume that we are starting from scratch here can we?
|
||||
feed_dict[self.middleware_embedder.c_in] = self.middleware_embedder.c_init
|
||||
feed_dict[self.middleware_embedder.h_in] = self.middleware_embedder.h_init
|
||||
@@ -206,7 +205,7 @@ class TensorFlowArchitecture(Architecture):
|
||||
|
||||
# extract the fetches
|
||||
norm_unclipped_grads, grads, total_loss, losses = result[:4]
|
||||
if self.tp.agent.middleware_type == MiddlewareTypes.LSTM:
|
||||
if self.tp.agent.middleware_type == conf.MiddlewareTypes.LSTM:
|
||||
(self.curr_rnn_c_in, self.curr_rnn_h_in) = result[4]
|
||||
fetched_tensors = []
|
||||
if len(additional_fetches) > 0:
|
||||
@@ -308,7 +307,7 @@ class TensorFlowArchitecture(Architecture):
|
||||
if outputs is None:
|
||||
outputs = self.outputs
|
||||
|
||||
if self.tp.agent.middleware_type == MiddlewareTypes.LSTM:
|
||||
if self.tp.agent.middleware_type == conf.MiddlewareTypes.LSTM:
|
||||
feed_dict[self.middleware_embedder.c_in] = self.curr_rnn_c_in
|
||||
feed_dict[self.middleware_embedder.h_in] = self.curr_rnn_h_in
|
||||
|
||||
@@ -317,7 +316,7 @@ class TensorFlowArchitecture(Architecture):
|
||||
output = self.tp.sess.run(outputs, feed_dict)
|
||||
|
||||
if squeeze_output:
|
||||
output = squeeze_list(output)
|
||||
output = utils.squeeze_list(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,8 +13,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from configurations import EmbedderComplexity
|
||||
|
||||
|
||||
|
||||
@@ -13,15 +13,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import tensorflow as tf
|
||||
|
||||
from architectures.tensorflow_components.embedders import *
|
||||
from architectures.tensorflow_components.heads import *
|
||||
from architectures.tensorflow_components.middleware import *
|
||||
from architectures.tensorflow_components.architecture import *
|
||||
from configurations import InputTypes, OutputTypes, MiddlewareTypes
|
||||
from architectures.tensorflow_components import architecture
|
||||
from architectures.tensorflow_components import embedders
|
||||
from architectures.tensorflow_components import middleware
|
||||
from architectures.tensorflow_components import heads
|
||||
import configurations as conf
|
||||
|
||||
|
||||
class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
||||
class GeneralTensorFlowNetwork(architecture.TensorFlowArchitecture):
|
||||
"""
|
||||
A generalized version of all possible networks implemented using tensorflow.
|
||||
"""
|
||||
@@ -37,7 +38,7 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
||||
self.activation_function = self.get_activation_function(
|
||||
tuning_parameters.agent.hidden_layers_activation_function)
|
||||
|
||||
TensorFlowArchitecture.__init__(self, tuning_parameters, name, global_network, network_is_local)
|
||||
architecture.TensorFlowArchitecture.__init__(self, tuning_parameters, name, global_network, network_is_local)
|
||||
|
||||
def get_activation_function(self, activation_function_string):
|
||||
activation_functions = {
|
||||
@@ -56,37 +57,37 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
||||
# the observation can be either an image or a vector
|
||||
def get_observation_embedding(with_timestep=False):
|
||||
if self.input_height > 1:
|
||||
return ImageEmbedder((self.input_height, self.input_width, self.input_depth), name="observation",
|
||||
input_rescaler=self.tp.agent.input_rescaler)
|
||||
return embedders.ImageEmbedder((self.input_height, self.input_width, self.input_depth), name="observation",
|
||||
input_rescaler=self.tp.agent.input_rescaler)
|
||||
else:
|
||||
return VectorEmbedder((self.input_width + int(with_timestep), self.input_depth), name="observation")
|
||||
return embedders.VectorEmbedder((self.input_width + int(with_timestep), self.input_depth), name="observation")
|
||||
|
||||
input_mapping = {
|
||||
InputTypes.Observation: get_observation_embedding(),
|
||||
InputTypes.Measurements: VectorEmbedder(self.measurements_size, name="measurements"),
|
||||
InputTypes.GoalVector: VectorEmbedder(self.measurements_size, name="goal_vector"),
|
||||
InputTypes.Action: VectorEmbedder((self.num_actions,), name="action"),
|
||||
InputTypes.TimedObservation: get_observation_embedding(with_timestep=True),
|
||||
conf.InputTypes.Observation: get_observation_embedding(),
|
||||
conf.InputTypes.Measurements: embedders.VectorEmbedder(self.measurements_size, name="measurements"),
|
||||
conf.InputTypes.GoalVector: embedders.VectorEmbedder(self.measurements_size, name="goal_vector"),
|
||||
conf.InputTypes.Action: embedders.VectorEmbedder((self.num_actions,), name="action"),
|
||||
conf.InputTypes.TimedObservation: get_observation_embedding(with_timestep=True),
|
||||
}
|
||||
return input_mapping[embedder_type]
|
||||
|
||||
def get_middleware_embedder(self, middleware_type):
|
||||
return {MiddlewareTypes.LSTM: LSTM_Embedder,
|
||||
MiddlewareTypes.FC: FC_Embedder}.get(middleware_type)(self.activation_function)
|
||||
return {conf.MiddlewareTypes.LSTM: middleware.LSTM_Embedder,
|
||||
conf.MiddlewareTypes.FC: middleware.FC_Embedder}.get(middleware_type)(self.activation_function)
|
||||
|
||||
def get_output_head(self, head_type, head_idx, loss_weight=1.):
|
||||
output_mapping = {
|
||||
OutputTypes.Q: QHead,
|
||||
OutputTypes.DuelingQ: DuelingQHead,
|
||||
OutputTypes.V: VHead,
|
||||
OutputTypes.Pi: PolicyHead,
|
||||
OutputTypes.MeasurementsPrediction: MeasurementsPredictionHead,
|
||||
OutputTypes.DNDQ: DNDQHead,
|
||||
OutputTypes.NAF: NAFHead,
|
||||
OutputTypes.PPO: PPOHead,
|
||||
OutputTypes.PPO_V: PPOVHead,
|
||||
OutputTypes.CategoricalQ: CategoricalQHead,
|
||||
OutputTypes.QuantileRegressionQ: QuantileRegressionQHead
|
||||
conf.OutputTypes.Q: heads.QHead,
|
||||
conf.OutputTypes.DuelingQ: heads.DuelingQHead,
|
||||
conf.OutputTypes.V: heads.VHead,
|
||||
conf.OutputTypes.Pi: heads.PolicyHead,
|
||||
conf.OutputTypes.MeasurementsPrediction: heads.MeasurementsPredictionHead,
|
||||
conf.OutputTypes.DNDQ: heads.DNDQHead,
|
||||
conf.OutputTypes.NAF: heads.NAFHead,
|
||||
conf.OutputTypes.PPO: heads.PPOHead,
|
||||
conf.OutputTypes.PPO_V: heads.PPOVHead,
|
||||
conf.OutputTypes.CategoricalQ: heads.CategoricalQHead,
|
||||
conf.OutputTypes.QuantileRegressionQ: heads.QuantileRegressionQHead
|
||||
}
|
||||
return output_mapping[head_type](self.tp, head_idx, loss_weight, self.network_is_local)
|
||||
|
||||
|
||||
@@ -13,10 +13,10 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from utils import force_list
|
||||
|
||||
import utils
|
||||
|
||||
|
||||
# Used to initialize weights for policy and value output layers
|
||||
@@ -36,7 +36,7 @@ class Head(object):
|
||||
self.loss = []
|
||||
self.loss_type = []
|
||||
self.regularizations = []
|
||||
self.loss_weight = force_list(loss_weight)
|
||||
self.loss_weight = utils.force_list(loss_weight)
|
||||
self.target = []
|
||||
self.input = []
|
||||
self.is_local = is_local
|
||||
@@ -50,12 +50,12 @@ class Head(object):
|
||||
with tf.variable_scope(self.get_name(), initializer=tf.contrib.layers.xavier_initializer()):
|
||||
self._build_module(input_layer)
|
||||
|
||||
self.output = force_list(self.output)
|
||||
self.target = force_list(self.target)
|
||||
self.input = force_list(self.input)
|
||||
self.loss_type = force_list(self.loss_type)
|
||||
self.loss = force_list(self.loss)
|
||||
self.regularizations = force_list(self.regularizations)
|
||||
self.output = utils.force_list(self.output)
|
||||
self.target = utils.force_list(self.target)
|
||||
self.input = utils.force_list(self.input)
|
||||
self.loss_type = utils.force_list(self.loss_type)
|
||||
self.loss = utils.force_list(self.loss)
|
||||
self.regularizations = utils.force_list(self.regularizations)
|
||||
if self.is_local:
|
||||
self.set_loss()
|
||||
self._post_build()
|
||||
|
||||
@@ -13,7 +13,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,7 +13,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
@@ -79,4 +78,4 @@ class SharedRunningStats(object):
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
return self._shape
|
||||
return self._shape
|
||||
|
||||
95
coach.py
95
coach.py
@@ -13,46 +13,42 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import sys, inspect, re
|
||||
import os
|
||||
import json
|
||||
import presets
|
||||
from presets import *
|
||||
from utils import set_gpu, list_all_classes_in_module
|
||||
from architectures import *
|
||||
from environments import *
|
||||
from agents import *
|
||||
from utils import *
|
||||
from logger import screen, logger
|
||||
import argparse
|
||||
from subprocess import Popen
|
||||
import datetime
|
||||
import presets
|
||||
import atexit
|
||||
import sys
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
from threading import Thread
|
||||
import sys
|
||||
import time
|
||||
|
||||
if len(set(failed_imports)) > 0:
|
||||
screen.warning("Warning: failed to import the following packages - {}".format(', '.join(set(failed_imports))))
|
||||
import agents
|
||||
import argparse
|
||||
import configurations as conf
|
||||
import environments
|
||||
import logger
|
||||
import presets
|
||||
import utils
|
||||
|
||||
|
||||
if len(set(logger.failed_imports)) > 0:
|
||||
logger.screen.warning("Warning: failed to import the following packages - {}".format(', '.join(set(logger.failed_imports))))
|
||||
|
||||
|
||||
def set_framework(framework_type):
|
||||
# choosing neural network framework
|
||||
framework = Frameworks().get(framework_type)
|
||||
framework = conf.Frameworks().get(framework_type)
|
||||
sess = None
|
||||
if framework == Frameworks.TensorFlow:
|
||||
if framework == conf.Frameworks.TensorFlow:
|
||||
import tensorflow as tf
|
||||
config = tf.ConfigProto()
|
||||
config.allow_soft_placement = True
|
||||
config.gpu_options.allow_growth = True
|
||||
config.gpu_options.per_process_gpu_memory_fraction = 0.2
|
||||
sess = tf.Session(config=config)
|
||||
elif framework == Frameworks.Neon:
|
||||
elif framework == conf.Frameworks.Neon:
|
||||
import ngraph as ng
|
||||
sess = ng.transformers.make_transformer()
|
||||
screen.log_title("Using {} framework".format(Frameworks().to_string(framework)))
|
||||
logger.screen.log_title("Using {} framework".format(conf.Frameworks().to_string(framework)))
|
||||
return sess
|
||||
|
||||
|
||||
@@ -66,8 +62,8 @@ def check_input_and_fill_run_dict(parser):
|
||||
|
||||
# list available presets
|
||||
if args.list:
|
||||
presets_lists = list_all_classes_in_module(presets)
|
||||
screen.log_title("Available Presets:")
|
||||
presets_lists = utils.list_all_classes_in_module(presets)
|
||||
logger.screen.log_title("Available Presets:")
|
||||
for preset in presets_lists:
|
||||
print(preset)
|
||||
sys.exit(0)
|
||||
@@ -77,28 +73,28 @@ def check_input_and_fill_run_dict(parser):
|
||||
# num_workers = int(args.num_workers)
|
||||
num_workers = int(re.match("^\d+$", args.num_workers).group(0))
|
||||
except ValueError:
|
||||
screen.error("Parameter num_workers should be an integer.")
|
||||
logger.screen.error("Parameter num_workers should be an integer.")
|
||||
|
||||
preset_names = list_all_classes_in_module(presets)
|
||||
preset_names = utils.list_all_classes_in_module(presets)
|
||||
if args.preset is not None and args.preset not in preset_names:
|
||||
screen.error("A non-existing preset was selected. ")
|
||||
logger.screen.error("A non-existing preset was selected. ")
|
||||
|
||||
if args.checkpoint_restore_dir is not None and not os.path.exists(args.checkpoint_restore_dir):
|
||||
screen.error("The requested checkpoint folder to load from does not exist. ")
|
||||
logger.screen.error("The requested checkpoint folder to load from does not exist. ")
|
||||
|
||||
if args.save_model_sec is not None:
|
||||
try:
|
||||
args.save_model_sec = int(args.save_model_sec)
|
||||
except ValueError:
|
||||
screen.error("Parameter save_model_sec should be an integer.")
|
||||
logger.screen.error("Parameter save_model_sec should be an integer.")
|
||||
|
||||
if args.preset is None and (args.agent_type is None or args.environment_type is None
|
||||
or args.exploration_policy_type is None) and not args.play:
|
||||
screen.error('When no preset is given for Coach to run, the user is expected to input the desired agent_type,'
|
||||
logger.screen.error('When no preset is given for Coach to run, the user is expected to input the desired agent_type,'
|
||||
' environment_type and exploration_policy_type to assemble a preset. '
|
||||
'\nAt least one of these parameters was not given.')
|
||||
elif args.preset is None and args.play and args.environment_type is None:
|
||||
screen.error('When no preset is given for Coach to run, and the user requests human control over the environment,'
|
||||
logger.screen.error('When no preset is given for Coach to run, and the user requests human control over the environment,'
|
||||
' the user is expected to input the desired environment_type and level.'
|
||||
'\nAt least one of these parameters was not given.')
|
||||
elif args.preset is None and args.play and args.environment_type:
|
||||
@@ -106,11 +102,11 @@ def check_input_and_fill_run_dict(parser):
|
||||
args.exploration_policy_type = 'ExplorationParameters'
|
||||
|
||||
# get experiment name and path
|
||||
experiment_name = logger.get_experiment_name(args.experiment_name)
|
||||
experiment_path = logger.get_experiment_path(experiment_name)
|
||||
experiment_name = logger.logger.get_experiment_name(args.experiment_name)
|
||||
experiment_path = logger.logger.get_experiment_path(experiment_name)
|
||||
|
||||
if args.play and num_workers > 1:
|
||||
screen.warning("Playing the game as a human is only available with a single worker. "
|
||||
logger.screen.warning("Playing the game as a human is only available with a single worker. "
|
||||
"The number of workers will be reduced to 1")
|
||||
num_workers = 1
|
||||
|
||||
@@ -123,7 +119,7 @@ def check_input_and_fill_run_dict(parser):
|
||||
run_dict['preset'] = args.preset
|
||||
run_dict['custom_parameter'] = args.custom_parameter
|
||||
run_dict['experiment_path'] = experiment_path
|
||||
run_dict['framework'] = Frameworks().get(args.framework)
|
||||
run_dict['framework'] = conf.Frameworks().get(args.framework)
|
||||
run_dict['play'] = args.play
|
||||
run_dict['evaluate'] = args.evaluate# or args.play
|
||||
|
||||
@@ -251,16 +247,16 @@ if __name__ == "__main__":
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||
|
||||
# dump documentation
|
||||
logger.set_dump_dir(run_dict['experiment_path'], add_timestamp=True)
|
||||
logger.logger.set_dump_dir(run_dict['experiment_path'], add_timestamp=True)
|
||||
if not args.no_summary:
|
||||
atexit.register(logger.summarize_experiment)
|
||||
screen.change_terminal_title(logger.experiment_name)
|
||||
atexit.register(logger.logger.summarize_experiment)
|
||||
logger.screen.change_terminal_title(logger.logger.experiment_name)
|
||||
|
||||
# Single-threaded runs
|
||||
if run_dict['num_threads'] == 1:
|
||||
# set tuning parameters
|
||||
json_run_dict_path = run_dict_to_json(run_dict)
|
||||
tuning_parameters = json_to_preset(json_run_dict_path)
|
||||
tuning_parameters = presets.json_to_preset(json_run_dict_path)
|
||||
tuning_parameters.sess = set_framework(args.framework)
|
||||
|
||||
if args.print_parameters:
|
||||
@@ -268,8 +264,9 @@ if __name__ == "__main__":
|
||||
|
||||
# Single-thread runs
|
||||
tuning_parameters.task_index = 0
|
||||
env_instance = create_environment(tuning_parameters)
|
||||
agent = eval(tuning_parameters.agent.type + '(env_instance, tuning_parameters)')
|
||||
env_instance = environments.create_environment(tuning_parameters)
|
||||
agent = eval('agents.' + tuning_parameters.agent.type +
|
||||
'(env_instance, tuning_parameters)')
|
||||
|
||||
# Start the training or evaluation
|
||||
if tuning_parameters.evaluate:
|
||||
@@ -282,11 +279,11 @@ if __name__ == "__main__":
|
||||
assert args.framework.lower() == 'tensorflow', "Distributed training works only with TensorFlow"
|
||||
os.environ["OMP_NUM_THREADS"]="1"
|
||||
# set parameter server and workers addresses
|
||||
ps_hosts = "localhost:{}".format(get_open_port())
|
||||
worker_hosts = ",".join(["localhost:{}".format(get_open_port()) for i in range(run_dict['num_threads'] + 1)])
|
||||
ps_hosts = "localhost:{}".format(utils.get_open_port())
|
||||
worker_hosts = ",".join(["localhost:{}".format(utils.get_open_port()) for i in range(run_dict['num_threads'] + 1)])
|
||||
|
||||
# Make sure to disable GPU so that all the workers will use the CPU
|
||||
set_cpu()
|
||||
utils.set_cpu()
|
||||
|
||||
# create a parameter server
|
||||
cmd = [
|
||||
@@ -296,9 +293,9 @@ if __name__ == "__main__":
|
||||
"--worker_hosts={}".format(worker_hosts),
|
||||
"--job_name=ps",
|
||||
]
|
||||
parameter_server = Popen(cmd)
|
||||
parameter_server = subprocess.Popen(cmd)
|
||||
|
||||
screen.log_title("*** Distributed Training ***")
|
||||
logger.screen.log_title("*** Distributed Training ***")
|
||||
time.sleep(1)
|
||||
|
||||
# create N training workers and 1 evaluating worker
|
||||
@@ -321,7 +318,7 @@ if __name__ == "__main__":
|
||||
"--job_name=worker",
|
||||
"--load_json={}".format(json_run_dict_path)]
|
||||
|
||||
p = Popen(workers_args)
|
||||
p = subprocess.Popen(workers_args)
|
||||
|
||||
if i != run_dict['num_threads']:
|
||||
workers.append(p)
|
||||
|
||||
@@ -13,13 +13,13 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from utils import Enum
|
||||
import json
|
||||
|
||||
import types
|
||||
import utils
|
||||
|
||||
|
||||
class Frameworks(Enum):
|
||||
class Frameworks(utils.Enum):
|
||||
TensorFlow = 1
|
||||
Neon = 2
|
||||
|
||||
|
||||
203
dashboard.py
203
dashboard.py
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -19,29 +19,24 @@ To run Coach Dashboard, run the following command:
|
||||
python3 dashboard.py
|
||||
"""
|
||||
|
||||
from utils import *
|
||||
import os
|
||||
import datetime
|
||||
|
||||
import sys
|
||||
import wx
|
||||
import random
|
||||
import pandas as pd
|
||||
from pandas.io.common import EmptyDataError
|
||||
import numpy as np
|
||||
import colorsys
|
||||
from bokeh.palettes import Dark2
|
||||
from bokeh.layouts import row, column, widgetbox, Spacer
|
||||
from bokeh.models import ColumnDataSource, Range1d, LinearAxis, HoverTool, WheelZoomTool, PanTool, Legend
|
||||
from bokeh.models.widgets import RadioButtonGroup, MultiSelect, Button, Select, Slider, Div, CheckboxGroup
|
||||
from bokeh.models.glyphs import Patch
|
||||
from bokeh.plotting import figure, show, curdoc
|
||||
from utils import force_list
|
||||
from utils import squeeze_list
|
||||
from itertools import cycle
|
||||
from os import listdir
|
||||
from os.path import isfile, join, isdir, basename
|
||||
from enum import Enum
|
||||
import datetime
|
||||
import enum
|
||||
import itertools
|
||||
import os
|
||||
import random
|
||||
|
||||
from bokeh import palettes
|
||||
from bokeh import layouts as bl
|
||||
from bokeh import models as bm
|
||||
from bokeh.models import widgets as bw
|
||||
from bokeh import plotting as bp
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from pandas.io import pandas_common
|
||||
import wx
|
||||
|
||||
import utils
|
||||
|
||||
|
||||
class DialogApp(wx.App):
|
||||
@@ -67,7 +62,7 @@ class Signal:
|
||||
self.name = name
|
||||
self.full_name = "{}/{}".format(parent.filename, self.name)
|
||||
self.selected = False
|
||||
self.color = random.choice(Dark2[8])
|
||||
self.color = random.choice(palettes.Dark2[8])
|
||||
self.line = None
|
||||
self.bands = None
|
||||
self.bokeh_source = parent.bokeh_source
|
||||
@@ -79,12 +74,12 @@ class Signal:
|
||||
if (len(name.split('/')) == 1 and name == self.name) or '/'.join(name.split('/')[:-1]) == self.name:
|
||||
self.sub_signals.append(name)
|
||||
if len(self.sub_signals) > 1:
|
||||
self.mean_signal = squeeze_list([name for name in self.sub_signals if 'Mean' in name.split('/')[-1]])
|
||||
self.stdev_signal = squeeze_list([name for name in self.sub_signals if 'Stdev' in name.split('/')[-1]])
|
||||
self.min_signal = squeeze_list([name for name in self.sub_signals if 'Min' in name.split('/')[-1]])
|
||||
self.max_signal = squeeze_list([name for name in self.sub_signals if 'Max' in name.split('/')[-1]])
|
||||
self.mean_signal = utils.squeeze_list([name for name in self.sub_signals if 'Mean' in name.split('/')[-1]])
|
||||
self.stdev_signal = utils.squeeze_list([name for name in self.sub_signals if 'Stdev' in name.split('/')[-1]])
|
||||
self.min_signal = utils.squeeze_list([name for name in self.sub_signals if 'Min' in name.split('/')[-1]])
|
||||
self.max_signal = utils.squeeze_list([name for name in self.sub_signals if 'Max' in name.split('/')[-1]])
|
||||
else:
|
||||
self.mean_signal = squeeze_list(self.name)
|
||||
self.mean_signal = utils.squeeze_list(self.name)
|
||||
self.stdev_signal = None
|
||||
self.min_signal = None
|
||||
self.max_signal = None
|
||||
@@ -107,16 +102,16 @@ class Signal:
|
||||
if self.selected != val:
|
||||
self.selected = val
|
||||
if self.line:
|
||||
# self.set_color(Dark2[8][current_color])
|
||||
# current_color = (current_color + 1) % len(Dark2[8])
|
||||
# self.set_color(palettes.Dark2[8][current_color])
|
||||
# current_color = (current_color + 1) % len(palettes.Dark2[8])
|
||||
self.line.visible = self.selected
|
||||
if self.bands:
|
||||
self.bands.visible = self.selected and self.show_bollinger_bands
|
||||
elif self.selected:
|
||||
# lazy plotting - plot only when selected for the first time
|
||||
show_spinner()
|
||||
self.set_color(Dark2[8][current_color])
|
||||
current_color = (current_color + 1) % len(Dark2[8])
|
||||
self.set_color(palettes.Dark2[8][current_color])
|
||||
current_color = (current_color + 1) % len(palettes.Dark2[8])
|
||||
if self.has_bollinger_bands:
|
||||
self.set_bands_source()
|
||||
self.create_bands()
|
||||
@@ -149,7 +144,7 @@ class Signal:
|
||||
if self.bollinger_bands_source:
|
||||
self.bollinger_bands_source.data = source_data
|
||||
else:
|
||||
self.bollinger_bands_source = ColumnDataSource(source_data)
|
||||
self.bollinger_bands_source = bm.ColumnDataSource(source_data)
|
||||
|
||||
def change_bollinger_bands_state(self, new_state):
|
||||
self.show_bollinger_bands = new_state
|
||||
@@ -192,11 +187,11 @@ class SignalsFileBase:
|
||||
|
||||
def update_source_and_signals(self):
|
||||
# create bokeh data sources
|
||||
self.bokeh_source_orig = ColumnDataSource(self.csv)
|
||||
self.bokeh_source_orig = bm.ColumnDataSource(self.csv)
|
||||
self.bokeh_source_orig.data['index'] = self.bokeh_source_orig.data[x_axis]
|
||||
|
||||
if self.bokeh_source is None:
|
||||
self.bokeh_source = ColumnDataSource(self.csv)
|
||||
self.bokeh_source = bm.ColumnDataSource(self.csv)
|
||||
else:
|
||||
# self.bokeh_source.data = self.bokeh_source_orig.data
|
||||
# smooth the data if necessary
|
||||
@@ -282,7 +277,7 @@ class SignalsFile(SignalsFileBase):
|
||||
def __init__(self, csv_path, load=True):
|
||||
SignalsFileBase.__init__(self)
|
||||
self.full_csv_path = csv_path
|
||||
self.dir, self.filename, _ = break_file_path(csv_path)
|
||||
self.dir, self.filename, _ = utils.break_file_path(csv_path)
|
||||
if load:
|
||||
self.load()
|
||||
# this helps set the correct x axis
|
||||
@@ -296,7 +291,7 @@ class SignalsFile(SignalsFileBase):
|
||||
try:
|
||||
self.csv = pd.read_csv(self.full_csv_path)
|
||||
break
|
||||
except EmptyDataError:
|
||||
except pandas_common.EmptyDataError:
|
||||
self.csv = None
|
||||
continue
|
||||
self.csv = self.csv.interpolate()
|
||||
@@ -327,7 +322,7 @@ class SignalsFilesGroup(SignalsFileBase):
|
||||
else:
|
||||
# get the common directory for all the experiments
|
||||
self.dir = os.path.dirname(os.path.commonprefix(csv_paths))
|
||||
self.filename = '{} - Group({})'.format(basename(self.dir), len(self.signals_files))
|
||||
self.filename = '{} - Group({})'.format(os.path.basename(self.dir), len(self.signals_files))
|
||||
self.load()
|
||||
|
||||
# this helps set the correct x axis
|
||||
@@ -425,7 +420,7 @@ class SignalsFilesGroup(SignalsFileBase):
|
||||
pass
|
||||
|
||||
|
||||
class RunType(Enum):
|
||||
class RunType(enum.Enum):
|
||||
SINGLE_FOLDER_SINGLE_FILE = 1
|
||||
SINGLE_FOLDER_MULTIPLE_FILES = 2
|
||||
MULTIPLE_FOLDERS_SINGLE_FILES = 3
|
||||
@@ -433,7 +428,7 @@ class RunType(Enum):
|
||||
UNKNOWN = 0
|
||||
|
||||
|
||||
class FolderType(Enum):
|
||||
class FolderType(enum.Enum):
|
||||
SINGLE_FILE = 1
|
||||
MULTIPLE_FILES = 2
|
||||
MULTIPLE_FOLDERS = 3
|
||||
@@ -454,24 +449,24 @@ root_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
with open(os.path.join(root_dir, 'spinner.css'), 'r') as f:
|
||||
spinner_style = """<style>{}</style>""".format(f.read())
|
||||
spinner_html = """<ul class="spinner"><li></li><li></li><li></li><li></li></ul>"""
|
||||
spinner = Div(text="""""")
|
||||
spinner = bw.Div(text="""""")
|
||||
|
||||
# file refresh time placeholder
|
||||
refresh_info = Div(text="""""", width=210)
|
||||
refresh_info = bw.Div(text="""""", width=210)
|
||||
|
||||
# create figures
|
||||
plot = figure(plot_width=1200, plot_height=800,
|
||||
tools='pan,box_zoom,wheel_zoom,crosshair,undo,redo,reset,save',
|
||||
toolbar_location='above', x_axis_label='Episodes',
|
||||
x_range=Range1d(0, 10000), y_range=Range1d(0, 100000))
|
||||
plot.extra_y_ranges = {"secondary": Range1d(start=-100, end=200)}
|
||||
plot.add_layout(LinearAxis(y_range_name="secondary"), 'right')
|
||||
plot = bp.figure(plot_width=1200, plot_height=800,
|
||||
tools='pan,box_zoom,wheel_zoom,crosshair,undo,redo,reset,save',
|
||||
toolbar_location='above', x_axis_label='Episodes',
|
||||
x_range=bm.Range1d(0, 10000), y_range=bm.Range1d(0, 100000))
|
||||
plot.extra_y_ranges = {"secondary": bm.Range1d(start=-100, end=200)}
|
||||
plot.add_layout(bm.LinearAxis(y_range_name="secondary"), 'right')
|
||||
|
||||
# legend
|
||||
div = Div(text="""""")
|
||||
legend = widgetbox([div])
|
||||
div = bw.Div(text="""""")
|
||||
legend = bl.widgetbox([div])
|
||||
|
||||
bokeh_legend = Legend(
|
||||
bokeh_legend = bm.Legend(
|
||||
items=[("12345678901234567890123456789012345678901234567890", [])], # 50 letters
|
||||
# items=[(" ", [])], # 50 letters
|
||||
location=(-20, 0), orientation="vertical",
|
||||
@@ -605,8 +600,8 @@ def load_files_group():
|
||||
|
||||
# classify the folder as containing a single file, multiple files or only folders
|
||||
def classify_folder(dir_path):
|
||||
files = [f for f in listdir(dir_path) if isfile(join(dir_path, f)) and f.endswith('.csv')]
|
||||
folders = [d for d in listdir(dir_path) if isdir(join(dir_path, d))]
|
||||
files = [f for f in os.listdir(dir_path) if os.path.isfile(os.path.join(dir_path, f)) and f.endswith('.csv')]
|
||||
folders = [d for d in os.listdir(dir_path) if os.path.isdir(os.path.join(dir_path, d))]
|
||||
if len(files) == 1:
|
||||
return FolderType.SINGLE_FILE
|
||||
elif len(files) > 1:
|
||||
@@ -628,7 +623,7 @@ def get_run_type(dir_path):
|
||||
|
||||
elif folder_type == FolderType.MULTIPLE_FOLDERS:
|
||||
# folder contains sub dirs -> we assume we can classify the folder using only the first sub dir
|
||||
sub_dirs = [d for d in listdir(dir_path) if isdir(join(dir_path, d))]
|
||||
sub_dirs = [d for d in os.listdir(dir_path) if os.path.isdir(os.path.join(dir_path, d))]
|
||||
|
||||
# checking only the first folder in the root dir for its type, since we assume that all sub dirs will share the
|
||||
# same structure (i.e. if one is a result of multi-threaded run, so will all the other).
|
||||
@@ -645,12 +640,12 @@ def add_directory_csv_files(dir_path, paths=None):
|
||||
if not paths:
|
||||
paths = []
|
||||
|
||||
for p in listdir(dir_path):
|
||||
path = join(dir_path, p)
|
||||
if isdir(path):
|
||||
for p in os.listdir(dir_path):
|
||||
path = os.path.join(dir_path, p)
|
||||
if os.path.isdir(path):
|
||||
# call recursively for each dir
|
||||
paths = add_directory_csv_files(path, paths)
|
||||
elif isfile(path) and path.endswith('.csv'):
|
||||
elif os.path.isfile(path) and path.endswith('.csv'):
|
||||
# add every file to the list
|
||||
paths.append(path)
|
||||
|
||||
@@ -667,7 +662,7 @@ def handle_dir(dir_path, run_type):
|
||||
elif run_type == RunType.MULTIPLE_FOLDERS_SINGLE_FILES:
|
||||
create_files_group_signal(paths)
|
||||
elif run_type == RunType.MULTIPLE_FOLDERS_MULTIPLE_FILES:
|
||||
sub_dirs = [d for d in listdir(dir_path) if isdir(join(dir_path, d))]
|
||||
sub_dirs = [d for d in os.listdir(dir_path) if os.path.isdir(os.path.join(dir_path, d))]
|
||||
# for d in sub_dirs:
|
||||
# paths = add_directory_csv_files(os.path.join(dir_path, d))
|
||||
# create_files_group_signal(paths)
|
||||
@@ -731,7 +726,7 @@ def unload_file():
|
||||
selected_file.hide_all_signals()
|
||||
del signals_files[selected_file.filename]
|
||||
data_selector.options = [""]
|
||||
filenames = cycle(files_selector.options)
|
||||
filenames = itertools.cycle(files_selector.options)
|
||||
files_selector.options.remove(selected_file.filename)
|
||||
if len(files_selector.options) > 0:
|
||||
files_selector.value = next(filenames)
|
||||
@@ -869,48 +864,48 @@ crcolor, crRGBs = generate_color_range(color_resolution, brightness) # produce
|
||||
# ---------------- Build Website Layout -------------------
|
||||
|
||||
# select file
|
||||
file_selection_button = Button(label="Select Files", button_type="success", width=120)
|
||||
file_selection_button = bw.Button(label="Select Files", button_type="success", width=120)
|
||||
file_selection_button.on_click(load_files_group)
|
||||
|
||||
files_selector_spacer = Spacer(width=10)
|
||||
files_selector_spacer = bl.Spacer(width=10)
|
||||
|
||||
group_selection_button = Button(label="Select Directory", button_type="primary", width=140)
|
||||
group_selection_button = bw.Button(label="Select Directory", button_type="primary", width=140)
|
||||
group_selection_button.on_click(load_directory_group)
|
||||
|
||||
unload_file_button = Button(label="Unload", button_type="danger", width=50)
|
||||
unload_file_button = bw.Button(label="Unload", button_type="danger", width=50)
|
||||
unload_file_button.on_click(unload_file)
|
||||
|
||||
# files selection box
|
||||
files_selector = Select(title="Files:", options=[], width=200)
|
||||
files_selector = bw.Select(title="Files:", options=[], width=200)
|
||||
files_selector.on_change('value', change_data_selector)
|
||||
|
||||
# data selection box
|
||||
data_selector = MultiSelect(title="Data:", options=[], size=12)
|
||||
data_selector = bw.MultiSelect(title="Data:", options=[], size=12)
|
||||
data_selector.on_change('value', select_data)
|
||||
|
||||
# x axis selection box
|
||||
x_axis_selector_title = Div(text="""X Axis:""")
|
||||
x_axis_selector = RadioButtonGroup(labels=x_axis_options, active=0)
|
||||
x_axis_selector_title = bw.Div(text="""X Axis:""")
|
||||
x_axis_selector = bw.RadioButtonGroup(labels=x_axis_options, active=0)
|
||||
x_axis_selector.on_click(change_x_axis)
|
||||
|
||||
# toggle second axis button
|
||||
toggle_second_axis_button = Button(label="Toggle Second Axis", button_type="success")
|
||||
# toggle second axis bw.button
|
||||
toggle_second_axis_button = bw.Button(label="Toggle Second Axis", button_type="success")
|
||||
toggle_second_axis_button.on_click(toggle_second_axis)
|
||||
|
||||
# averaging slider
|
||||
averaging_slider = Slider(title="Averaging window", start=1, end=101, step=10)
|
||||
averaging_slider = bw.Slider(title="Averaging window", start=1, end=101, step=10)
|
||||
averaging_slider.on_change('value', update_averaging)
|
||||
|
||||
# group properties checkbox
|
||||
group_cb = CheckboxGroup(labels=["Show statistics bands", "Ungroup signals"], active=[])
|
||||
group_cb = bw.CheckboxGroup(labels=["Show statistics bands", "Ungroup signals"], active=[])
|
||||
group_cb.on_click(toggle_group_property)
|
||||
|
||||
# color selector
|
||||
color_selector_title = Div(text="""Select Color:""")
|
||||
crsource = ColumnDataSource(data=dict(x=crx, y=cry, crcolor=crcolor, RGBs=crRGBs))
|
||||
color_selector = figure(x_range=(0, color_resolution), y_range=(0, 10),
|
||||
plot_width=300, plot_height=40,
|
||||
tools='tap')
|
||||
color_selector_title = bw.Div(text="""Select Color:""")
|
||||
crsource = bm.ColumnDataSource(data=dict(x=crx, y=cry, crcolor=crcolor, RGBs=crRGBs))
|
||||
color_selector = bp.figure(x_range=(0, color_resolution), y_range=(0, 10),
|
||||
plot_width=300, plot_height=40,
|
||||
tools='tap')
|
||||
color_selector.axis.visible = False
|
||||
color_range = color_selector.rect(x='x', y='y', width=1, height=10,
|
||||
color='crcolor', source=crsource)
|
||||
@@ -920,43 +915,43 @@ color_selector.toolbar.logo = None
|
||||
color_selector.toolbar_location = None
|
||||
|
||||
# title
|
||||
title = Div(text="""<h1>Coach Dashboard</h1>""")
|
||||
title = bw.Div(text="""<h1>Coach Dashboard</h1>""")
|
||||
|
||||
# landing page
|
||||
landing_page_description = Div(text="""<h3>Start by selecting an experiment file or directory to open:</h3>""")
|
||||
center = Div(text="""<style>html { text-align: center; } </style>""")
|
||||
center_buttons = Div(text="""<style>.bk-grid-row .bk-layout-fixed { margin: 0 auto; }</style>""", width=0)
|
||||
landing_page = column(center,
|
||||
landing_page_description = bw.Div(text="""<h3>Start by selecting an experiment file or directory to open:</h3>""")
|
||||
center = bw.Div(text="""<style>html { text-align: center; } </style>""")
|
||||
center_buttons = bw.Div(text="""<style>.bk-grid-row .bk-layout-fixed { margin: 0 auto; }</style>""", width=0)
|
||||
landing_page = bl.column(center,
|
||||
title,
|
||||
landing_page_description,
|
||||
row(center_buttons),
|
||||
row(file_selection_button, sizing_mode='scale_width'),
|
||||
row(group_selection_button, sizing_mode='scale_width'),
|
||||
bl.row(center_buttons),
|
||||
bl.row(file_selection_button, sizing_mode='scale_width'),
|
||||
bl.row(group_selection_button, sizing_mode='scale_width'),
|
||||
sizing_mode='scale_width')
|
||||
|
||||
# main layout of the document
|
||||
layout = row(file_selection_button, files_selector_spacer, group_selection_button, width=300)
|
||||
layout = column(layout, files_selector)
|
||||
layout = column(layout, row(refresh_info, unload_file_button))
|
||||
layout = column(layout, data_selector)
|
||||
layout = column(layout, color_selector_title)
|
||||
layout = column(layout, color_selector)
|
||||
layout = column(layout, x_axis_selector_title)
|
||||
layout = column(layout, x_axis_selector)
|
||||
layout = column(layout, group_cb)
|
||||
layout = column(layout, toggle_second_axis_button)
|
||||
layout = column(layout, averaging_slider)
|
||||
# layout = column(layout, legend)
|
||||
layout = row(layout, plot)
|
||||
layout = column(title, layout)
|
||||
layout = column(layout, spinner)
|
||||
layout = bl.row(file_selection_button, files_selector_spacer, group_selection_button, width=300)
|
||||
layout = bl.column(layout, files_selector)
|
||||
layout = bl.column(layout, bl.row(refresh_info, unload_file_button))
|
||||
layout = bl.column(layout, data_selector)
|
||||
layout = bl.column(layout, color_selector_title)
|
||||
layout = bl.column(layout, color_selector)
|
||||
layout = bl.column(layout, x_axis_selector_title)
|
||||
layout = bl.column(layout, x_axis_selector)
|
||||
layout = bl.column(layout, group_cb)
|
||||
layout = bl.column(layout, toggle_second_axis_button)
|
||||
layout = bl.column(layout, averaging_slider)
|
||||
# layout = bl.column(layout, legend)
|
||||
layout = bl.row(layout, plot)
|
||||
layout = bl.column(title, layout)
|
||||
layout = bl.column(layout, spinner)
|
||||
|
||||
doc = curdoc()
|
||||
doc = bp.curdoc()
|
||||
doc.add_root(landing_page)
|
||||
|
||||
doc.add_periodic_callback(reload_all_files, 20000)
|
||||
plot.y_range = Range1d(0, 100)
|
||||
plot.extra_y_ranges['secondary'] = Range1d(0, 100)
|
||||
plot.y_range = bm.Range1d(0, 100)
|
||||
plot.extra_y_ranges['secondary'] = bm.Range1d(0, 100)
|
||||
|
||||
# show load file dialog immediately on start
|
||||
#doc.add_timeout_callback(load_files, 1000)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,7 +13,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -24,9 +24,9 @@ Adds support for displaying math formulas using [MathJax](http://www.mathjax.org
|
||||
|
||||
Author: 2015, Dmitry Shachnev <mitya57@gmail.com>.
|
||||
'''
|
||||
|
||||
import markdown
|
||||
|
||||
|
||||
class MathExtension(markdown.extensions.Extension):
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.config = {
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,11 +14,9 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from distutils.core import setup
|
||||
|
||||
|
||||
long_description = \
|
||||
"""This extension adds math formulas support to Python-Markdown_
|
||||
(works with version 2.6 or newer).
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,8 +13,10 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import fnmatch
|
||||
import os
|
||||
|
||||
|
||||
import os, fnmatch, sys
|
||||
def findReplace(directory, find, replace, filePattern):
|
||||
for path, dirs, files in os.walk(os.path.abspath(directory)):
|
||||
for filename in fnmatch.filter(files, filePattern):
|
||||
@@ -25,7 +27,8 @@ def findReplace(directory, find, replace, filePattern):
|
||||
with open(filepath, "w") as f:
|
||||
f.write(s)
|
||||
|
||||
if __name__=="__main__":
|
||||
|
||||
if __name__ == "__main__":
|
||||
findReplace('./site/', '/"', '/index.html"', "*.html")
|
||||
findReplace('./site/', '"/index.html"', '"./index.html"', "*.html")
|
||||
findReplace('./site/', '"."', '"./index.html"', "*.html")
|
||||
@@ -34,4 +37,4 @@ if __name__=="__main__":
|
||||
findReplace('./site/', '/#', '/index.html#', "search_index.json")
|
||||
findReplace('./site/assets/javascripts/', 'search_index.json', 'search_index.txt', "*.js")
|
||||
findReplace('./site/mkdocs/js/', 'search_index.json', 'search_index.txt', "search.js")
|
||||
os.rename("./site/mkdocs/search_index.json", "./site/mkdocs/search_index.txt")
|
||||
os.rename("./site/mkdocs/search_index.json", "./site/mkdocs/search_index.txt")
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,15 +13,13 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from logger import *
|
||||
from utils import Enum, get_open_port
|
||||
from environments.gym_environment_wrapper import *
|
||||
from environments.doom_environment_wrapper import *
|
||||
from environments.carla_environment_wrapper import *
|
||||
from environments.gym_environment_wrapper import GymEnvironmentWrapper
|
||||
from environments.doom_environment_wrapper import DoomEnvironmentWrapper
|
||||
from environments.carla_environment_wrapper import CarlaEnvironmentWrapper
|
||||
import utils
|
||||
|
||||
|
||||
class EnvTypes(Enum):
|
||||
class EnvTypes(utils.Enum):
|
||||
Doom = "DoomEnvironmentWrapper"
|
||||
Gym = "GymEnvironmentWrapper"
|
||||
Carla = "CarlaEnvironmentWrapper"
|
||||
@@ -31,6 +29,3 @@ def create_environment(tuning_parameters):
|
||||
env_type_name, env_type = EnvTypes().verify(tuning_parameters.env.type)
|
||||
env = eval(env_type)(tuning_parameters)
|
||||
return env
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,34 +1,31 @@
|
||||
import logging
|
||||
import os
|
||||
import signal
|
||||
import subprocess
|
||||
import sys
|
||||
from os import path, environ
|
||||
|
||||
try:
|
||||
if 'CARLA_ROOT' in environ:
|
||||
sys.path.append(path.join(environ.get('CARLA_ROOT'), 'PythonClient'))
|
||||
from carla.client import CarlaClient
|
||||
from carla.settings import CarlaSettings
|
||||
from carla.tcp import TCPConnectionError
|
||||
from carla.sensor import Camera
|
||||
from carla.client import VehicleControl
|
||||
except ImportError:
|
||||
from logger import failed_imports
|
||||
failed_imports.append("CARLA")
|
||||
|
||||
import numpy as np
|
||||
import time
|
||||
import logging
|
||||
import subprocess
|
||||
import signal
|
||||
from environments.environment_wrapper import EnvironmentWrapper
|
||||
from utils import *
|
||||
from logger import screen, logger
|
||||
from PIL import Image
|
||||
|
||||
import logger
|
||||
try:
|
||||
if 'CARLA_ROOT' in os.environ:
|
||||
sys.path.append(os.path.join(os.environ.get('CARLA_ROOT'),
|
||||
'PythonClient'))
|
||||
from carla import client as carla_client
|
||||
from carla import settings as carla_settings
|
||||
from carla import sensor as carla_sensor
|
||||
except ImportError:
|
||||
logger.failed_imports.append("CARLA")
|
||||
from environments import environment_wrapper as ew
|
||||
import utils
|
||||
|
||||
|
||||
# enum of the available levels and their path
|
||||
class CarlaLevel(Enum):
|
||||
class CarlaLevel(utils.Enum):
|
||||
TOWN1 = "/Game/Maps/Town01"
|
||||
TOWN2 = "/Game/Maps/Town02"
|
||||
|
||||
|
||||
key_map = {
|
||||
'BRAKE': (274,), # down arrow
|
||||
'GAS': (273,), # up arrow
|
||||
@@ -41,16 +38,16 @@ key_map = {
|
||||
}
|
||||
|
||||
|
||||
class CarlaEnvironmentWrapper(EnvironmentWrapper):
|
||||
class CarlaEnvironmentWrapper(ew.EnvironmentWrapper):
|
||||
def __init__(self, tuning_parameters):
|
||||
EnvironmentWrapper.__init__(self, tuning_parameters)
|
||||
ew.EnvironmentWrapper.__init__(self, tuning_parameters)
|
||||
|
||||
self.tp = tuning_parameters
|
||||
|
||||
# server configuration
|
||||
self.server_height = self.tp.env.server_height
|
||||
self.server_width = self.tp.env.server_width
|
||||
self.port = get_open_port()
|
||||
self.port = utils.get_open_port()
|
||||
self.host = 'localhost'
|
||||
self.map = CarlaLevel().get(self.tp.env.level)
|
||||
|
||||
@@ -70,7 +67,7 @@ class CarlaEnvironmentWrapper(EnvironmentWrapper):
|
||||
self.settings = fp.read()
|
||||
else:
|
||||
# hard coded settings
|
||||
self.settings = CarlaSettings()
|
||||
self.settings = carla_settings.CarlaSettings()
|
||||
self.settings.set(
|
||||
SynchronousMode=True,
|
||||
SendNonPlayerAgentsInfo=False,
|
||||
@@ -80,7 +77,7 @@ class CarlaEnvironmentWrapper(EnvironmentWrapper):
|
||||
self.settings.randomize_seeds()
|
||||
|
||||
# add cameras
|
||||
camera = Camera('CameraRGB')
|
||||
camera = carla_sensor.Camera('CameraRGB')
|
||||
camera.set_image_size(self.width, self.height)
|
||||
camera.set_position(200, 0, 140)
|
||||
camera.set_rotation(0, 0, 0)
|
||||
@@ -92,7 +89,7 @@ class CarlaEnvironmentWrapper(EnvironmentWrapper):
|
||||
logging.disable(40)
|
||||
|
||||
# open the client
|
||||
self.game = CarlaClient(self.host, self.port, timeout=99999999)
|
||||
self.game = carla_client.CarlaClient(self.host, self.port, timeout=99999999)
|
||||
self.game.connect()
|
||||
scene = self.game.load_settings(self.settings)
|
||||
|
||||
@@ -141,12 +138,12 @@ class CarlaEnvironmentWrapper(EnvironmentWrapper):
|
||||
self.renderer.create_screen(image.shape[1], image.shape[0])
|
||||
|
||||
def _open_server(self):
|
||||
log_path = path.join(logger.experiments_path, "CARLA_LOG_{}.txt".format(self.port))
|
||||
log_path = os.path.join(logger.logger.experiments_path, "CARLA_LOG_{}.txt".format(self.port))
|
||||
with open(log_path, "wb") as out:
|
||||
cmd = [path.join(environ.get('CARLA_ROOT'), 'CarlaUE4.sh'), self.map,
|
||||
"-benchmark", "-carla-server", "-fps=10", "-world-port={}".format(self.port),
|
||||
"-windowed -ResX={} -ResY={}".format(self.server_width, self.server_height),
|
||||
"-carla-no-hud"]
|
||||
cmd = [os.path.join(os.environ.get('CARLA_ROOT'), 'CarlaUE4.sh'), self.map,
|
||||
"-benchmark", "-carla-server", "-fps=10", "-world-port={}".format(self.port),
|
||||
"-windowed -ResX={} -ResY={}".format(self.server_width, self.server_height),
|
||||
"-carla-no-hud"]
|
||||
if self.config:
|
||||
cmd.append("-carla-settings={}".format(self.config))
|
||||
p = subprocess.Popen(cmd, stdout=out, stderr=out)
|
||||
@@ -201,7 +198,7 @@ class CarlaEnvironmentWrapper(EnvironmentWrapper):
|
||||
action = action_idx
|
||||
self.last_action_idx = action
|
||||
|
||||
self.control = VehicleControl()
|
||||
self.control = carla_client.VehicleControl()
|
||||
self.control.throttle = np.clip(action[0], 0, 1)
|
||||
self.control.steer = np.clip(action[1], -1, 1)
|
||||
self.control.brake = np.abs(np.clip(action[0], -1, 0))
|
||||
|
||||
@@ -13,23 +13,23 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import enum
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
import logger
|
||||
try:
|
||||
import vizdoom
|
||||
except ImportError:
|
||||
from logger import failed_imports
|
||||
failed_imports.append("ViZDoom")
|
||||
logger.failed_imports.append("ViZDoom")
|
||||
|
||||
import numpy as np
|
||||
from environments.environment_wrapper import EnvironmentWrapper
|
||||
from os import path, environ
|
||||
from utils import *
|
||||
from logger import *
|
||||
from environments import environment_wrapper as ew
|
||||
import utils
|
||||
|
||||
|
||||
# enum of the available levels and their path
|
||||
class DoomLevel(Enum):
|
||||
class DoomLevel(utils.Enum):
|
||||
BASIC = "basic.cfg"
|
||||
DEFEND = "defend_the_center.cfg"
|
||||
DEATHMATCH = "deathmatch.cfg"
|
||||
@@ -40,6 +40,7 @@ class DoomLevel(Enum):
|
||||
DEFEND_THE_LINE = "defend_the_line.cfg"
|
||||
DEADLY_CORRIDOR = "deadly_corridor.cfg"
|
||||
|
||||
|
||||
key_map = {
|
||||
'NO-OP': 96, # `
|
||||
'ATTACK': 13, # enter
|
||||
@@ -78,15 +79,16 @@ key_map = {
|
||||
}
|
||||
|
||||
|
||||
class DoomEnvironmentWrapper(EnvironmentWrapper):
|
||||
class DoomEnvironmentWrapper(ew.EnvironmentWrapper):
|
||||
def __init__(self, tuning_parameters):
|
||||
EnvironmentWrapper.__init__(self, tuning_parameters)
|
||||
ew.EnvironmentWrapper.__init__(self, tuning_parameters)
|
||||
|
||||
# load the emulator with the required level
|
||||
self.level = DoomLevel().get(self.tp.env.level)
|
||||
self.scenarios_dir = path.join(environ.get('VIZDOOM_ROOT'), 'scenarios')
|
||||
self.scenarios_dir = os.path.join(os.environ.get('VIZDOOM_ROOT'),
|
||||
'scenarios')
|
||||
self.game = vizdoom.DoomGame()
|
||||
self.game.load_config(path.join(self.scenarios_dir, self.level))
|
||||
self.game.load_config(os.path.join(self.scenarios_dir, self.level))
|
||||
self.game.set_window_visible(False)
|
||||
self.game.add_game_args("+vid_forcesurface 1")
|
||||
|
||||
|
||||
@@ -13,14 +13,14 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
from utils import *
|
||||
from configurations import Preset
|
||||
from renderer import Renderer
|
||||
import operator
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
|
||||
import renderer
|
||||
import utils
|
||||
|
||||
|
||||
class EnvironmentWrapper(object):
|
||||
def __init__(self, tuning_parameters):
|
||||
@@ -50,7 +50,7 @@ class EnvironmentWrapper(object):
|
||||
self.height = 1
|
||||
self.is_state_type_image = True
|
||||
self.measurements_size = 0
|
||||
self.phase = RunPhase.TRAIN
|
||||
self.phase = utils.RunPhase.TRAIN
|
||||
self.tp = tuning_parameters
|
||||
self.record_video_every = self.tp.visualization.record_video_every
|
||||
self.env_id = self.tp.env.level
|
||||
@@ -62,7 +62,7 @@ class EnvironmentWrapper(object):
|
||||
self.wait_for_explicit_human_action = False
|
||||
self.is_rendered = self.is_rendered or self.human_control
|
||||
self.game_is_open = True
|
||||
self.renderer = Renderer()
|
||||
self.renderer = renderer.Renderer()
|
||||
|
||||
@property
|
||||
def measurements(self):
|
||||
|
||||
@@ -13,40 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import random
|
||||
|
||||
import sys
|
||||
from logger import *
|
||||
import gym
|
||||
import numpy as np
|
||||
import time
|
||||
import random
|
||||
try:
|
||||
import roboschool
|
||||
from OpenGL import GL
|
||||
except ImportError:
|
||||
from logger import failed_imports
|
||||
failed_imports.append("RoboSchool")
|
||||
|
||||
try:
|
||||
from gym_extensions.continuous import mujoco
|
||||
except:
|
||||
from logger import failed_imports
|
||||
failed_imports.append("GymExtensions")
|
||||
|
||||
try:
|
||||
import pybullet_envs
|
||||
except ImportError:
|
||||
from logger import failed_imports
|
||||
failed_imports.append("PyBullet")
|
||||
|
||||
from gym import wrappers
|
||||
from utils import force_list, RunPhase
|
||||
from environments.environment_wrapper import EnvironmentWrapper
|
||||
from environments import environment_wrapper as ew
|
||||
import utils
|
||||
|
||||
|
||||
class GymEnvironmentWrapper(EnvironmentWrapper):
|
||||
class GymEnvironmentWrapper(ew.EnvironmentWrapper):
|
||||
def __init__(self, tuning_parameters):
|
||||
EnvironmentWrapper.__init__(self, tuning_parameters)
|
||||
ew.EnvironmentWrapper.__init__(self, tuning_parameters)
|
||||
|
||||
# env parameters
|
||||
if ':' in self.env_id:
|
||||
@@ -124,7 +102,7 @@ class GymEnvironmentWrapper(EnvironmentWrapper):
|
||||
|
||||
def _update_state(self):
|
||||
if hasattr(self.env, 'env') and hasattr(self.env.env, 'ale'):
|
||||
if self.phase == RunPhase.TRAIN and hasattr(self, 'current_ale_lives'):
|
||||
if self.phase == utils.RunPhase.TRAIN and hasattr(self, 'current_ale_lives'):
|
||||
# signal termination for life loss
|
||||
if self.current_ale_lives != self.env.env.ale.lives():
|
||||
self.done = True
|
||||
@@ -146,7 +124,7 @@ class GymEnvironmentWrapper(EnvironmentWrapper):
|
||||
if type(action_idx) == int and action_idx == 0:
|
||||
# deal with the "reset" action 0
|
||||
action = [0] * self.env.action_space.shape[0]
|
||||
action = np.array(force_list(action))
|
||||
action = np.array(utils.force_list(action))
|
||||
# removing redundant dimensions such that the action size will match the expected action size from gym
|
||||
if action.shape != self.env.action_space.shape:
|
||||
action = np.squeeze(action)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,16 +13,29 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from exploration_policies.additive_noise import AdditiveNoise
|
||||
from exploration_policies.approximated_thompson_sampling_using_dropout import ApproximatedThompsonSamplingUsingDropout
|
||||
from exploration_policies.bayesian import Bayesian
|
||||
from exploration_policies.boltzmann import Boltzmann
|
||||
from exploration_policies.bootstrapped import Bootstrapped
|
||||
from exploration_policies.categorical import Categorical
|
||||
from exploration_policies.continuous_entropy import ContinuousEntropy
|
||||
from exploration_policies.e_greedy import EGreedy
|
||||
from exploration_policies.exploration_policy import ExplorationPolicy
|
||||
from exploration_policies.greedy import Greedy
|
||||
from exploration_policies.ou_process import OUProcess
|
||||
from exploration_policies.thompson_sampling import ThompsonSampling
|
||||
|
||||
from exploration_policies.additive_noise import *
|
||||
from exploration_policies.approximated_thompson_sampling_using_dropout import *
|
||||
from exploration_policies.bayesian import *
|
||||
from exploration_policies.boltzmann import *
|
||||
from exploration_policies.bootstrapped import *
|
||||
from exploration_policies.categorical import *
|
||||
from exploration_policies.continuous_entropy import *
|
||||
from exploration_policies.e_greedy import *
|
||||
from exploration_policies.exploration_policy import *
|
||||
from exploration_policies.greedy import *
|
||||
from exploration_policies.ou_process import *
|
||||
from exploration_policies.thompson_sampling import *
|
||||
|
||||
__all__ = [AdditiveNoise,
|
||||
ApproximatedThompsonSamplingUsingDropout,
|
||||
Bayesian,
|
||||
Boltzmann,
|
||||
Bootstrapped,
|
||||
Categorical,
|
||||
ContinuousEntropy,
|
||||
EGreedy,
|
||||
ExplorationPolicy,
|
||||
Greedy,
|
||||
OUProcess,
|
||||
ThompsonSampling]
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,18 +13,19 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
from exploration_policies.exploration_policy import *
|
||||
|
||||
from exploration_policies import exploration_policy
|
||||
import utils
|
||||
|
||||
|
||||
class AdditiveNoise(ExplorationPolicy):
|
||||
class AdditiveNoise(exploration_policy.ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
exploration_policy.ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
self.variance = tuning_parameters.exploration.initial_noise_variance_percentage
|
||||
self.final_variance = tuning_parameters.exploration.final_noise_variance_percentage
|
||||
self.decay_steps = tuning_parameters.exploration.noise_variance_decay_steps
|
||||
@@ -37,7 +38,7 @@ class AdditiveNoise(ExplorationPolicy):
|
||||
self.variance = self.final_variance
|
||||
|
||||
def get_action(self, action_values):
|
||||
if self.phase == RunPhase.TRAIN:
|
||||
if self.phase == utils.RunPhase.TRAIN:
|
||||
self.decay_exploration()
|
||||
action = np.random.normal(action_values, 2 * self.variance * self.action_abs_range)
|
||||
return action #np.clip(action, -self.action_abs_range, self.action_abs_range).squeeze()
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,17 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from exploration_policies.exploration_policy import *
|
||||
from exploration_policies import exploration_policy
|
||||
|
||||
|
||||
class ApproximatedThompsonSamplingUsingDropout(ExplorationPolicy):
|
||||
class ApproximatedThompsonSamplingUsingDropout(exploration_policy.ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
exploration_policy.ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
self.dropout_discard_probability = tuning_parameters.exploration.dropout_discard_probability
|
||||
self.network = tuning_parameters.network
|
||||
self.assign_op = self.network.dropout_discard_probability.assign(self.dropout_discard_probability)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,18 +13,19 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from exploration_policies.exploration_policy import *
|
||||
import tensorflow as tf
|
||||
from exploration_policies import exploration_policy
|
||||
import utils
|
||||
|
||||
|
||||
class Bayesian(ExplorationPolicy):
|
||||
class Bayesian(exploration_policy.ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
exploration_policy.ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
self.keep_probability = tuning_parameters.exploration.initial_keep_probability
|
||||
self.final_keep_probability = tuning_parameters.exploration.final_keep_probability
|
||||
self.keep_probability_decay_delta = (
|
||||
@@ -40,7 +41,7 @@ class Bayesian(ExplorationPolicy):
|
||||
self.keep_probability -= self.keep_probability_decay_delta
|
||||
|
||||
def get_action(self, action_values):
|
||||
if self.phase == RunPhase.TRAIN:
|
||||
if self.phase == utils.RunPhase.TRAIN:
|
||||
self.decay_keep_probability()
|
||||
# dropout = self.network.get_layer('variable_dropout_1')
|
||||
# with tf.Session() as sess:
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,17 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from exploration_policies.exploration_policy import *
|
||||
from exploration_policies import exploration_policy
|
||||
import utils
|
||||
|
||||
|
||||
class Boltzmann(ExplorationPolicy):
|
||||
class Boltzmann(exploration_policy.ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
exploration_policy.ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
self.temperature = tuning_parameters.exploration.initial_temperature
|
||||
self.final_temperature = tuning_parameters.exploration.final_temperature
|
||||
self.temperature_decay_delta = (
|
||||
@@ -35,7 +36,7 @@ class Boltzmann(ExplorationPolicy):
|
||||
self.temperature -= self.temperature_decay_delta
|
||||
|
||||
def get_action(self, action_values):
|
||||
if self.phase == RunPhase.TRAIN:
|
||||
if self.phase == utils.RunPhase.TRAIN:
|
||||
self.decay_temperature()
|
||||
# softmax calculation
|
||||
exp_probabilities = np.exp(action_values / self.temperature)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,17 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from exploration_policies.e_greedy import *
|
||||
from exploration_policies import e_greedy
|
||||
|
||||
|
||||
class Bootstrapped(EGreedy):
|
||||
class Bootstrapped(e_greedy.EGreedy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running parameters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
EGreedy.__init__(self, tuning_parameters)
|
||||
e_greedy.EGreedy.__init__(self, tuning_parameters)
|
||||
self.num_heads = tuning_parameters.exploration.architecture_num_q_heads
|
||||
self.selected_head = 0
|
||||
|
||||
@@ -31,7 +32,7 @@ class Bootstrapped(EGreedy):
|
||||
self.selected_head = np.random.randint(self.num_heads)
|
||||
|
||||
def get_action(self, action_values):
|
||||
return EGreedy.get_action(self, action_values[self.selected_head])
|
||||
return e_greedy.EGreedy.get_action(self, action_values[self.selected_head])
|
||||
|
||||
def get_control_param(self):
|
||||
return self.selected_head
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,17 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from exploration_policies.exploration_policy import *
|
||||
from exploration_policies import exploration_policy
|
||||
|
||||
|
||||
class Categorical(ExplorationPolicy):
|
||||
class Categorical(exploration_policy.ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
exploration_policy.ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
|
||||
def get_action(self, action_values):
|
||||
# choose actions according to the probabilities
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,10 +13,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
from exploration_policies.exploration_policy import *
|
||||
from exploration_policies import exploration_policy
|
||||
|
||||
|
||||
class ContinuousEntropy(ExplorationPolicy):
|
||||
class ContinuousEntropy(exploration_policy.ExplorationPolicy):
|
||||
pass
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,17 +13,19 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from exploration_policies.exploration_policy import *
|
||||
from exploration_policies import exploration_policy
|
||||
import utils
|
||||
|
||||
|
||||
class EGreedy(ExplorationPolicy):
|
||||
class EGreedy(exploration_policy.ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
exploration_policy.ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
self.epsilon = tuning_parameters.exploration.initial_epsilon
|
||||
self.final_epsilon = tuning_parameters.exploration.final_epsilon
|
||||
self.epsilon_decay_delta = (
|
||||
@@ -52,9 +54,9 @@ class EGreedy(ExplorationPolicy):
|
||||
self.variance = self.final_variance
|
||||
|
||||
def get_action(self, action_values):
|
||||
if self.phase == RunPhase.TRAIN:
|
||||
if self.phase == utils.RunPhase.TRAIN:
|
||||
self.decay_exploration()
|
||||
epsilon = self.evaluation_epsilon if self.phase == RunPhase.TEST else self.epsilon
|
||||
epsilon = self.evaluation_epsilon if self.phase == utils.RunPhase.TEST else self.epsilon
|
||||
|
||||
if self.discrete_controls:
|
||||
top_action = np.argmax(action_values)
|
||||
@@ -67,4 +69,4 @@ class EGreedy(ExplorationPolicy):
|
||||
return np.squeeze(action_values + (np.random.rand() < epsilon) * noise)
|
||||
|
||||
def get_control_param(self):
|
||||
return self.evaluation_epsilon if self.phase == RunPhase.TEST else self.epsilon
|
||||
return self.evaluation_epsilon if self.phase == utils.RunPhase.TEST else self.epsilon
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,10 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
from utils import *
|
||||
from configurations import *
|
||||
import utils
|
||||
|
||||
|
||||
class ExplorationPolicy(object):
|
||||
@@ -25,7 +22,7 @@ class ExplorationPolicy(object):
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
self.phase = RunPhase.HEATUP
|
||||
self.phase = utils.RunPhase.HEATUP
|
||||
self.action_space_size = tuning_parameters.env.action_space_size
|
||||
self.action_abs_range = tuning_parameters.env_instance.action_space_abs_range
|
||||
self.discrete_controls = tuning_parameters.env_instance.discrete_controls
|
||||
@@ -39,7 +36,7 @@ class ExplorationPolicy(object):
|
||||
|
||||
def get_action(self, action_values):
|
||||
"""
|
||||
Given a list of values corresponding to each action,
|
||||
Given a list of values corresponding to each action,
|
||||
choose one actions according to the exploration policy
|
||||
:param action_values: A list of action values
|
||||
:return: The chosen action
|
||||
@@ -55,4 +52,4 @@ class ExplorationPolicy(object):
|
||||
self.phase = phase
|
||||
|
||||
def get_control_param(self):
|
||||
return 0
|
||||
return 0
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,17 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from exploration_policies.exploration_policy import *
|
||||
from exploration_policies import exploration_policy
|
||||
|
||||
|
||||
class Greedy(ExplorationPolicy):
|
||||
class Greedy(exploration_policy.ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
exploration_policy.ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
|
||||
def get_action(self, action_values):
|
||||
return np.argmax(action_values)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,21 +13,21 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
from exploration_policies.exploration_policy import *
|
||||
|
||||
from exploration_policies import exploration_policy
|
||||
|
||||
# Based on on the description in:
|
||||
# https://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab
|
||||
|
||||
# Ornstein-Uhlenbeck process
|
||||
class OUProcess(ExplorationPolicy):
|
||||
class OUProcess(exploration_policy.ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
exploration_policy.ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
self.action_space_size = tuning_parameters.env.action_space_size
|
||||
self.mu = float(tuning_parameters.exploration.mu) * np.ones(self.action_space_size)
|
||||
self.theta = tuning_parameters.exploration.theta
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,17 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
|
||||
from exploration_policies.exploration_policy import *
|
||||
from exploration_policies import exploration_policy
|
||||
|
||||
|
||||
class ThompsonSampling(ExplorationPolicy):
|
||||
class ThompsonSampling(exploration_policy.ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
exploration_policy.ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
self.action_space_size = tuning_parameters.env.action_space_size
|
||||
|
||||
def get_action(self, action_values):
|
||||
|
||||
23
logger.py
23
logger.py
@@ -13,19 +13,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from pandas import *
|
||||
import datetime
|
||||
import os
|
||||
import re
|
||||
from pprint import pprint
|
||||
import threading
|
||||
from subprocess import Popen, PIPE
|
||||
import time
|
||||
import datetime
|
||||
from six.moves import input
|
||||
from PIL import Image
|
||||
from typing import Union
|
||||
import shutil
|
||||
import time
|
||||
import typing
|
||||
|
||||
import pandas
|
||||
import PIL
|
||||
from six.moves import input
|
||||
|
||||
global failed_imports
|
||||
failed_imports = []
|
||||
@@ -90,7 +87,7 @@ class ScreenLogger(object):
|
||||
def ask_input(self, title):
|
||||
return input("{}{}{}".format(Colors.BG_CYAN, title, Colors.END))
|
||||
|
||||
def ask_yes_no(self, title: str, default: Union[None, bool]=None):
|
||||
def ask_yes_no(self, title: str, default: typing.Union[None, bool]=None):
|
||||
"""
|
||||
Ask the user for a yes / no question and return True if the answer is yes and False otherwise.
|
||||
The function will keep asking the user for an answer until he answers one of the possible responses.
|
||||
@@ -156,7 +153,7 @@ class BaseLogger(object):
|
||||
class Logger(BaseLogger):
|
||||
def __init__(self):
|
||||
BaseLogger.__init__(self)
|
||||
self.data = DataFrame()
|
||||
self.data = pandas.DataFrame()
|
||||
self.csv_path = ''
|
||||
self.doc_path = ''
|
||||
self.aggregated_data_across_threads = None
|
||||
@@ -249,7 +246,7 @@ class Logger(BaseLogger):
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
output_path = os.path.join(output_dir, output_file)
|
||||
pil_images = [Image.fromarray(image) for image in images]
|
||||
pil_images = [PIL.Image.fromarray(image) for image in images]
|
||||
pil_images[0].save(output_path, save_all=True, append_images=pil_images[1:], duration=1.0 / fps, loop=0)
|
||||
|
||||
def remove_experiment_dir(self):
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,7 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from memories.differentiable_neural_dictionary import AnnoyDictionary
|
||||
from memories.differentiable_neural_dictionary import AnnoyIndex
|
||||
from memories.differentiable_neural_dictionary import QDND
|
||||
from memories.episodic_experience_replay import EpisodicExperienceReplay
|
||||
from memories.memory import Episode
|
||||
from memories.memory import Memory
|
||||
from memories.memory import Transition
|
||||
|
||||
from memories.differentiable_neural_dictionary import *
|
||||
from memories.episodic_experience_replay import *
|
||||
from memories.memory import *
|
||||
__all__ = [AnnoyDictionary,
|
||||
AnnoyIndex,
|
||||
Episode,
|
||||
EpisodicExperienceReplay,
|
||||
Memory,
|
||||
QDND,
|
||||
Transition]
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,10 +13,11 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import os
|
||||
import pickle
|
||||
|
||||
import numpy as np
|
||||
from annoy import AnnoyIndex
|
||||
import os, pickle
|
||||
|
||||
|
||||
class AnnoyDictionary(object):
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,24 +13,25 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import typing
|
||||
|
||||
from memories.memory import *
|
||||
import threading
|
||||
from typing import Union
|
||||
import numpy as np
|
||||
|
||||
from memories import memory
|
||||
|
||||
|
||||
class EpisodicExperienceReplay(Memory):
|
||||
class EpisodicExperienceReplay(memory.Memory):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
Memory.__init__(self, tuning_parameters)
|
||||
memory.Memory.__init__(self, tuning_parameters)
|
||||
self.tp = tuning_parameters
|
||||
self.max_size_in_episodes = tuning_parameters.agent.num_episodes_in_experience_replay
|
||||
self.max_size_in_transitions = tuning_parameters.agent.num_transitions_in_experience_replay
|
||||
self.discount = tuning_parameters.agent.discount
|
||||
self.buffer = [Episode()] # list of episodes
|
||||
self.buffer = [memory.Episode()] # list of episodes
|
||||
self.transitions = []
|
||||
self._length = 1
|
||||
self._num_transitions = 0
|
||||
@@ -96,7 +97,7 @@ class EpisodicExperienceReplay(Memory):
|
||||
|
||||
def store(self, transition):
|
||||
if len(self.buffer) == 0:
|
||||
self.buffer.append(Episode())
|
||||
self.buffer.append(memory.Episode())
|
||||
last_episode = self.buffer[-1]
|
||||
last_episode.insert(transition)
|
||||
self.transitions.append(transition)
|
||||
@@ -109,7 +110,7 @@ class EpisodicExperienceReplay(Memory):
|
||||
n_step_return=self.tp.agent.n_step)
|
||||
self.buffer[-1].update_measurements_targets(self.tp.agent.num_predicted_steps_ahead)
|
||||
# self.buffer[-1].update_actions_probabilities() # used for off-policy policy optimization
|
||||
self.buffer.append(Episode())
|
||||
self.buffer.append(memory.Episode())
|
||||
|
||||
self.enforce_length()
|
||||
|
||||
@@ -148,7 +149,7 @@ class EpisodicExperienceReplay(Memory):
|
||||
def get(self, index):
|
||||
return self.get_episode(index)
|
||||
|
||||
def get_last_complete_episode(self) -> Union[None, Episode]:
|
||||
def get_last_complete_episode(self) -> typing.Union[None, memory.Episode]:
|
||||
"""
|
||||
Returns the last complete episode in the memory or None if there are no complete episodes
|
||||
:return: None or the last complete episode
|
||||
@@ -170,7 +171,7 @@ class EpisodicExperienceReplay(Memory):
|
||||
|
||||
def clean(self):
|
||||
self.transitions = []
|
||||
self.buffer = [Episode()]
|
||||
self.buffer = [memory.Episode()]
|
||||
self._length = 1
|
||||
self._num_transitions = 0
|
||||
self._num_transitions_in_complete_episodes = 0
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,10 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
import copy
|
||||
from configurations import *
|
||||
|
||||
|
||||
class Memory(object):
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,19 +13,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import argparse
|
||||
import tensorflow as tf
|
||||
from architectures import *
|
||||
from environments import *
|
||||
from agents import *
|
||||
from utils import *
|
||||
import os
|
||||
import time
|
||||
import copy
|
||||
from logger import *
|
||||
from configurations import *
|
||||
from presets import *
|
||||
import shutil
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
import agents
|
||||
import environments
|
||||
import logger
|
||||
import presets
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
@@ -66,15 +63,15 @@ if __name__ == "__main__":
|
||||
|
||||
elif args.job_name == "worker":
|
||||
# get tuning parameters
|
||||
tuning_parameters = json_to_preset(args.load_json_path)
|
||||
tuning_parameters = presets.json_to_preset(args.load_json_path)
|
||||
|
||||
# dump documentation
|
||||
if not os.path.exists(tuning_parameters.experiment_path):
|
||||
os.makedirs(tuning_parameters.experiment_path)
|
||||
if tuning_parameters.evaluate_only:
|
||||
logger.set_dump_dir(tuning_parameters.experiment_path, tuning_parameters.task_id, filename='evaluator')
|
||||
logger.logger.set_dump_dir(tuning_parameters.experiment_path, tuning_parameters.task_id, filename='evaluator')
|
||||
else:
|
||||
logger.set_dump_dir(tuning_parameters.experiment_path, tuning_parameters.task_id)
|
||||
logger.logger.set_dump_dir(tuning_parameters.experiment_path, tuning_parameters.task_id)
|
||||
|
||||
# multi-threading parameters
|
||||
tuning_parameters.start_time = start_time
|
||||
@@ -98,8 +95,8 @@ if __name__ == "__main__":
|
||||
cluster=cluster)
|
||||
|
||||
# create the agent and the environment
|
||||
env_instance = create_environment(tuning_parameters)
|
||||
exec('agent = ' + tuning_parameters.agent.type + '(env_instance, tuning_parameters, replicated_device=device, '
|
||||
env_instance = environments.create_environment(tuning_parameters)
|
||||
exec('agent = agents.' + tuning_parameters.agent.type + '(env_instance, tuning_parameters, replicated_device=device, '
|
||||
'thread_id=tuning_parameters.task_id)')
|
||||
|
||||
# building the scaffold
|
||||
@@ -169,6 +166,6 @@ if __name__ == "__main__":
|
||||
else:
|
||||
agent.improve()
|
||||
else:
|
||||
screen.error("Invalid mode requested for parallel_actor.")
|
||||
logger.screen.error("Invalid mode requested for parallel_actor.")
|
||||
exit(1)
|
||||
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from dashboard import SignalsFile
|
||||
import os
|
||||
|
||||
|
||||
class FigureMaker(object):
|
||||
|
||||
418
presets.py
418
presets.py
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,6 @@
|
||||
import pygame
|
||||
from pygame.locals import *
|
||||
import numpy as np
|
||||
import pygame
|
||||
from pygame import locals as loc
|
||||
|
||||
|
||||
class Renderer(object):
|
||||
@@ -21,7 +21,8 @@ class Renderer(object):
|
||||
:return: None
|
||||
"""
|
||||
self.size = (width, height)
|
||||
self.screen = self.display.set_mode(self.size, HWSURFACE | DOUBLEBUF)
|
||||
self.screen = self.display.set_mode(self.size,
|
||||
loc.HWSURFACE | loc.DOUBLEBUF)
|
||||
self.display.set_caption("Coach")
|
||||
self.is_open = True
|
||||
|
||||
|
||||
54
run_test.py
54
run_test.py
@@ -13,23 +13,21 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
import presets
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from os import path
|
||||
import os
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import shutil
|
||||
import signal
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from logger import screen
|
||||
from utils import list_all_classes_in_module, threaded_cmd_line_run, killed_processes
|
||||
import subprocess
|
||||
import signal
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
import logger
|
||||
import presets
|
||||
import utils
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
@@ -61,7 +59,7 @@ if __name__ == '__main__':
|
||||
if args.preset is not None:
|
||||
presets_lists = [args.preset]
|
||||
else:
|
||||
presets_lists = list_all_classes_in_module(presets)
|
||||
presets_lists = utils.list_all_classes_in_module(presets)
|
||||
win_size = 10
|
||||
fail_count = 0
|
||||
test_count = 0
|
||||
@@ -70,7 +68,7 @@ if __name__ == '__main__':
|
||||
# create a clean experiment directory
|
||||
test_name = '__test'
|
||||
test_path = os.path.join('./experiments', test_name)
|
||||
if path.exists(test_path):
|
||||
if os.path.exists(test_path):
|
||||
shutil.rmtree(test_path)
|
||||
if args.ignore_presets is not None:
|
||||
presets_to_ignore = args.ignore_presets.split(',')
|
||||
@@ -100,7 +98,7 @@ if __name__ == '__main__':
|
||||
test_count += 1
|
||||
|
||||
# run the experiment in a separate thread
|
||||
screen.log_title("Running test {} - {}".format(preset_name, framework))
|
||||
logger.screen.log_title("Running test {} - {}".format(preset_name, framework))
|
||||
log_file_name = 'test_log_{preset_name}_{framework}.txt'.format(
|
||||
preset_name=preset_name,
|
||||
framework=framework,
|
||||
@@ -139,7 +137,7 @@ if __name__ == '__main__':
|
||||
|
||||
tries_counter = 0
|
||||
while not csv_paths:
|
||||
csv_paths = glob.glob(path.join(test_path, '*', filename_pattern))
|
||||
csv_paths = glob.glob(os.path.join(test_path, '*', filename_pattern))
|
||||
if tries_counter > read_csv_tries:
|
||||
break
|
||||
tries_counter += 1
|
||||
@@ -195,26 +193,26 @@ if __name__ == '__main__':
|
||||
# kill test and print result
|
||||
os.killpg(os.getpgid(p.pid), signal.SIGTERM)
|
||||
if test_passed:
|
||||
screen.success("Passed successfully")
|
||||
logger.screen.success("Passed successfully")
|
||||
else:
|
||||
if csv_paths:
|
||||
screen.error("Failed due to insufficient reward", crash=False)
|
||||
screen.error("preset.test_max_step_threshold: {}".format(preset.test_max_step_threshold), crash=False)
|
||||
screen.error("preset.test_min_return_threshold: {}".format(preset.test_min_return_threshold), crash=False)
|
||||
screen.error("averaged_rewards: {}".format(averaged_rewards), crash=False)
|
||||
screen.error("episode number: {}".format(csv['Episode #'].values[-1]), crash=False)
|
||||
logger.screen.error("Failed due to insufficient reward", crash=False)
|
||||
logger.screen.error("preset.test_max_step_threshold: {}".format(preset.test_max_step_threshold), crash=False)
|
||||
logger.screen.error("preset.test_min_return_threshold: {}".format(preset.test_min_return_threshold), crash=False)
|
||||
logger.screen.error("averaged_rewards: {}".format(averaged_rewards), crash=False)
|
||||
logger.screen.error("episode number: {}".format(csv['Episode #'].values[-1]), crash=False)
|
||||
else:
|
||||
screen.error("csv file never found", crash=False)
|
||||
logger.screen.error("csv file never found", crash=False)
|
||||
if args.verbose:
|
||||
screen.error("command exitcode: {}".format(p.returncode), crash=False)
|
||||
screen.error(open(log_file_name).read(), crash=False)
|
||||
logger.screen.error("command exitcode: {}".format(p.returncode), crash=False)
|
||||
logger.screen.error(open(log_file_name).read(), crash=False)
|
||||
|
||||
fail_count += 1
|
||||
shutil.rmtree(test_path)
|
||||
|
||||
|
||||
screen.separator()
|
||||
logger.screen.separator()
|
||||
if fail_count == 0:
|
||||
screen.success(" Summary: " + str(test_count) + "/" + str(test_count) + " tests passed successfully")
|
||||
logger.screen.success(" Summary: " + str(test_count) + "/" + str(test_count) + " tests passed successfully")
|
||||
else:
|
||||
screen.error(" Summary: " + str(test_count - fail_count) + "/" + str(test_count) + " tests passed successfully")
|
||||
logger.screen.error(" Summary: " + str(test_count - fail_count) + "/" + str(test_count) + " tests passed successfully")
|
||||
|
||||
20
utils.py
20
utils.py
@@ -13,20 +13,22 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import json
|
||||
import inspect
|
||||
import os
|
||||
import numpy as np
|
||||
import threading
|
||||
from subprocess import call, Popen
|
||||
import signal
|
||||
import copy
|
||||
import inspect
|
||||
import json
|
||||
import os
|
||||
import signal
|
||||
import subprocess
|
||||
import threading
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
killed_processes = []
|
||||
|
||||
eps = np.finfo(np.float32).eps
|
||||
|
||||
|
||||
class Enum(object):
|
||||
def __init__(self):
|
||||
pass
|
||||
@@ -161,7 +163,7 @@ def ClassToDict(x):
|
||||
|
||||
|
||||
def cmd_line_run(result, run_cmd, id=-1):
|
||||
p = Popen(run_cmd, shell=True, executable="/bin/bash")
|
||||
p = subprocess.Popen(run_cmd, shell=True, executable="/bin/bash")
|
||||
while result[0] is None or result[0] == [None]:
|
||||
if id in killed_processes:
|
||||
p.kill()
|
||||
|
||||
Reference in New Issue
Block a user